International Conference on Web and Internet Economics

Web and Internet Economics pp 201-215 | Cite as

Computation of Stackelberg Equilibria of Finite Sequential Games

  • Branislav Bošanský
  • Simina Brânzei
  • Kristoffer Arnsfelt Hansen
  • Peter Bro Miltersen
  • Troels Bjerre Sørensen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9470)

Abstract

The Stackelberg equilibrium is a solution concept that describes optimal strategies to commit to: Player 1 (the leader) first commits to a strategy that is publicly announced, then Player 2 (the follower) plays a best response to the leader’s choice. We study Stackelberg equilibria in finite sequential (i.e., extensive-form) games and provide new exact algorithms, approximate algorithms, and hardness results for finding equilibria for several classes of such two-player games.

References

  1. 1.
    Bosansky, B., Cermak, J.: Sequence-form algorithm for computing stackelberg equilibria in extensive-form games. In: Proceedings of AAAI (2015)Google Scholar
  2. 2.
    Conitzer, V., Korzhyk, D.: Commitment to correlated strategies. In: Proceedings of AAAI, pp. 632–637 (2011)Google Scholar
  3. 3.
    Conitzer, V., Sandholm, T.: Computing the optimal strategy to commit to. In: Proceedings of ACM-EC, pp. 82–90 (2006)Google Scholar
  4. 4.
    De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry, 2nd edn. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  5. 5.
    Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: computational complexity and applications to Gröbner bases. SIAM J. Discrete Math. 6(2), 246–269 (1993)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Letchford, J.: Computational aspects of Stackelberg games. Ph.D. thesis, Duke University (2013)Google Scholar
  7. 7.
    Letchford, J., Conitzer, V.: Computing optimal strategies to commit to in extensive-form games. In: Proceedings of ACM-EC, pp. 83–92. ACM (2010)Google Scholar
  8. 8.
    Letchford, J., MacDermed, L., Conitzer, V., Parr, R., Isbell, C.L.: Computing optimal strategies to commit to in stochastic games. In: Proceedings of AAAI, pp. 1380–1386 (2012)Google Scholar
  9. 9.
    Paruchuri, P., Pearce, J., Marecki, J., Tambe, M., Ordonez, F., Kraus, S.: Playing games for security: an efficient exact algorithm for solving bayesian stackelberg games. In: Proceedings of AAMAS, pp. 895–902 (2008)Google Scholar
  10. 10.
    von Stackelberg, H.: Marktform und gleichgewicht. Springer-Verlag (1934)Google Scholar
  11. 11.
    von Stengel, B., Forges, F.: Extensive-form correlated equilibrium: definition and computational complexity. Math. Oper. Res. 33(4), 1002–1022 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, Cambridge (2011)CrossRefMATHGoogle Scholar
  13. 13.
    Xu, H., Rabinovich, Z., Dughmi, S., Tambe, M.: Exploring information asymmetry in two-stage security games. In: Proceedings of AAAI (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Branislav Bošanský
    • 1
    • 2
  • Simina Brânzei
    • 1
  • Kristoffer Arnsfelt Hansen
    • 1
  • Peter Bro Miltersen
    • 1
  • Troels Bjerre Sørensen
    • 3
  1. 1.Department of Computer ScienceAarhus UniversityAarhusDenmark
  2. 2.Department of Computer Science, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic
  3. 3.IT-University of CopenhagenCopenhagenDenmark

Personalised recommendations