Skip to main content

Generating Random Hyperbolic Graphs in Subquadratic Time

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9472)


Complex networks have become increasingly popular for modeling various real-world phenomena. Realistic generative network models are important in this context as they simplify complex network research regarding data sharing, reproducibility, and scalability studies. Random hyperbolic graphs are a very promising family of geometric graphs with unit-disk neighborhood in the hyperbolic plane. Previous work provided empirical and theoretical evidence that this generative graph model creates networks with many realistic features.

In this work we provide the first generation algorithm for random hyperbolic graphs with subquadratic running time. We prove a time complexity of \(O((n^{3/2}+m) \log n)\) with high probability for the generation process. This running time is confirmed by experimental data with our implementation. The acceleration stems primarily from the reduction of pairwise distance computations through a polar quadtree, which we adapt to hyperbolic space for this purpose and which can be of independent interest. In practice we improve the running time of a previous implementation (which allows more general neighborhoods than the unit disk) by at least two orders of magnitude this way. Networks with billions of edges can now be generated in a few minutes.


  • Complex networks
  • Hyperbolic geometry
  • Efficient range query
  • Polar quadtree
  • Generative graph model

This work is partially supported by SPP 1736 Algorithms for Big Data of the German Research Foundation (DFG) and by the Ministry of Science, Research and the Arts Baden-Württemberg (MWK) via project Parallel Analysis of Dynamic Networks.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-48971-0_40
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-48971-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. 1.

    We consider the name “hyperbolic unit-disk graphs” as more precise, but we use “random hyperbolic graphs” to be consistent with the literature. More general neighborhoods are possible [15] but not considered here since most theoretical works [7, 8, 12] are for unit-disk neighborhoods.


  1. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Proceedings of the 32nd ACM Symposium on Theory of Computing, pp. 171–180. ACM (2000)

    Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Aldecoa, R., Orsini, C., Krioukov, D.: Hyperbolic graph generator. Comput. Phys. Commun. 196, 492–496 (2015). doi:10.1016/j.cpc.2015.05.028.

  4. Anderson, J.W.: Hyperbolic Geometry. Springer Undergraduate Mathematics Series, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  5. Bader, D.A., Berry, J., Kahan, S., Murphy, R., Riedy, E.J., Willcock, J.: Graph 500 benchmark 1 (“search”), version 1.1. Technical report, Graph 500 (2010)

    Google Scholar 

  6. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys. Rev. E 71(3), 036113 (2005)

    CrossRef  Google Scholar 

  7. Bode, M., Fountoulakis, N., Müller, T.: On the giant component of random hyperbolic graphs. In: The Seventh European Conference on Combinatorics, Graph Theory and Applications. CRM Series, vol. 16, pp. 425–429. Scuola Normale Superiore (2013)

    Google Scholar 

  8. Bode, M., Fountoulakis, N., Müller, T.: The probability that the hyperbolic random graph is connected (2014). Preprint

  9. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms. ACM Comput. Surv. (CSUR) 38(1), 2 (2006)

    CrossRef  Google Scholar 

  10. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In Proceedings of the 4th SIAM International Conference on Data Mining (SDM), Orlando, FL. SIAM, April 2004

    Google Scholar 

  11. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: from Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    CrossRef  MATH  Google Scholar 

  12. Gugelmann, L., Panagiotou, K., Peter, U.: Random hyperbolic graphs: degree sequence and clustering. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 573–585. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  13. Kiwi, M., Mitsche, D.: A bound for the diameter of random hyperbolic graphs. In: 2015 Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 26–39. SIAM, January 2015

    Google Scholar 

  14. Kolda, T.G., Pinar, A., Todd, P., Seshadhri, C.: A scalable generative graph model with community structure. SIAM J. Sci. Comput. 36(5), C424–C452 (2014)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    MathSciNet  CrossRef  Google Scholar 

  16. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    CrossRef  Google Scholar 

  17. Miller, J.C., Hagberg, A.: Efficient generation of networks with given expected degrees. In: Frieze, A., Horn, P., Prałat, P. (eds.) WAW 2011. LNCS, vol. 6732, pp. 115–126. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  18. Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    CrossRef  MATH  Google Scholar 

  19. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    MATH  Google Scholar 

  20. Seshadhri, C., Kolda, T.G., Pinar, A.: Community structure and scale-free collections of Erdős-Rényi graphs. Phys. Rev. E 85(5), 056109 (2012)

    CrossRef  Google Scholar 

  21. Seshadhri, C., Pinar, A., Kolda, T.G.: The similarity between stochastic Kronecker and Chung-Lu graph models. In: Proceedings of the 2012 SIAM International Conference on Data Mining (SDM), pp. 1071–1082 (2012)

    Google Scholar 

  22. Staudt, C.L., Sazonovs, A., Meyerhenke, H.: NetworKit: an interactive tool suite for high-performance network analysis (2014). arXiv preprint arXiv:1403.3005

  23. von Looz, M., Meyerhenke, H.: Querying probabilistic neighborhoods in spatial data sets efficiently, September 2015. ArXiv preprint arXiv:1509.01990

  24. von Looz, M., Meyerhenke, H., Prutkin, R.: Generating random hyperbolic graphs in subquadratic time, September 2015. ArXiv preprint arXiv:1501.03545

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Moritz von Looz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

von Looz, M., Meyerhenke, H., Prutkin, R. (2015). Generating Random Hyperbolic Graphs in Subquadratic Time. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)