Skip to main content

Mikrowellengestützte Systeme zur Zustandserkennung von Abgaskatalysatoren und Abgasfiltern im Überblick

  • Chapter
Book cover Automobil-Sensorik

Kurzfassung

Die Regelung von Abgasnachbehandlungssystemen erfordert die Kenntnis der Katalysatorzustände. Dies kann z.B. die Sauerstoffbeladung von Dreiwegekatalysatoren, die Ammoniak-Beladung von SCR-Katalysatoren oder die Rußbeladung von Partikelfiltern sein. Derzeit werden Katalysatorzustände nur indirekt und/oder mit Hilfe von Modellen bestimmt. Das mikrowellengestützte Verfahren bestimmt den Katalysatorzustand hingegen direkt. Über kleine Koppelelemente (Antennen) werden elektromagnetische Wellen in den Abgasstrang eingekoppelt und die Reflexion oder die Transmission gemessen. Die elektrischen Signale korrelieren sehr gut mit dem Zustand des jeweiligen Abgasnachbehandlungssystems. Dieser Beitrag gibt einen Überblick über den Stand der Technik.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Shelef, M., McCabe, R.W., “Twenty-five years after introduction of automotive catalysts: what next?”, Catalysis Today, Vol. 62, S. 35–50, 2000.

    Article  Google Scholar 

  2. Koebel, M., Elsener, M., Kröcher, O., Schär, C., Röthlisberger, R., Jaussi, F., Mangold, M., âNOx Reduction in the Exhaust of Mobile Heavy-Duty Diesel Engines by Urea-SCR†, Topics in Catalysis, Vol. 43, S. 43–48, 2004.

    Article  Google Scholar 

  3. Johnson, T., “Vehicle Emissions Review - 2012”, Directions in Engine-Efficiency and Emissions Research (DEER) Conference, Dearborn, Michigan, Oct. 16-19, 2012. Letzter Zugriff am 29.11.2015 auf https://www1.eere.energy.gov/vehicle-sandfuels/pdfs/deer_2012/wednesday/presentations/deer12_johnson.pdf

  4. Kröcher, O., Devadas, M., Elsener, M., Wokaun, A., Söger, N., Pfeifer, M., Mussmann, L., “Investigation of the selective catalytic reduction of NO by NH3 on Fe-ZSM5 monolith catalysts”, Applied Catalysis B: Environmental, Vol. 66, S. 208–216, 2006.

    Article  Google Scholar 

  5. Takeuchi, M., Matsumoto, S., “NOx storage-reduction catalysts for gasoline engines”, Topics in Catalysis, Vol. 28, S. 151–156, 2004.

    Article  Google Scholar 

  6. Twigg, M.V., Phillips, P.R., “Cleaning the air we breathe - Controlling diesel particulate emissions from passenger cars”, Platinum Metals Review, Vol. 53, S. 27–34, 2009.

    Article  Google Scholar 

  7. Twigg, M.V, “Progress and future challenges in controlling automotive exhaust gas emissions”, Applied Catalysis B: Environmental, Vol. 70, S. 2–15, 2007.

    Article  Google Scholar 

  8. Boaro, M., Trovarelli, A., Hwang, J.-H., Mason, T.O., “Electrical and oxygen sto- rage/release properties of nanocrystalline ceria-zirconia solid solutions”, Solid State Ionics, Vol. 147, S. 85–95, 2002.

    Article  Google Scholar 

  9. Möller, R., Votsmeier, M., Onder, C., Guzzella, L., Gieshoff, J., “Is oxygen storage in three-way catalysts an equilibrium controlled process?”, Applied Catalysis B: Environmental, Vol. 91, S. 30–38, 2009.

    Article  Google Scholar 

  10. Moos, R., “A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics”, International Journal of Applied Ceramic Technology, Vol. 2, S. 401–413, 2005.

    Article  Google Scholar 

  11. Alkemade, U.G., Schumann, B. “Engines and exhaust after treatment systems for future automotive applications”, Solid State Ionics, Vol. 177, S. 2291–2296, 2006.

    Article  Google Scholar 

  12. Reiß, S., Wedemann, M., Moos, R., Rösch, M., “Electrical in situ characterization of three-way catalyst coatings”, Topics in Catalysis, Vol. 52, S. 1898–1902, 2009.

    Article  Google Scholar 

  13. Moos, R., Zimmermann, C., Birkhofer, T., Knezevic, A., Plog, C., Busch, M.R., Ried T., “Sensor for Directly Determining the State of a NOx Storage Catalyst”, SAE Technical Paper 2008-01-0447, 2008, doi: 10.4271/2008-01-0447.

    Google Scholar 

  14. Feulner, M., Hagen, G., Piontkowski, A., Müller, A., Moos, R., “In-Operation Monitoring of the Soot Load of Diesel Particulate Filters - Initial Tests”, Topics in Catalysis, Vol. 56, S. 483–488, 2013.

    Article  Google Scholar 

  15. Moos, R., “Catalysts as Sensors - A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment”, Sensors, Vol. 10, S. 6773–6787, 2010.

    Article  Google Scholar 

  16. Birkhofer, T., Hofmann, P., Knezevic, A., Moos, R., Plog, C., Schneider, R., “Verfahren zur Erkennung des Zustands eines Katalysators mittels Mikrowellen”, Deutsche Patentschrift DE 10358495 B 4, 2003.

    Google Scholar 

  17. Moos, R., Spörl, M., Hagen, G., Gollwitzer, A., Wedemann, M., Fischerauer, G., “TWC: Lambda Control and OBD without Lambda Probe - An Initial Approach”, SAE Technical Paper 2008-01-0916, 2008, doi: 10.4271/2008-01-0916.

    Google Scholar 

  18. Fischerauer, G., Spörl, M., Gollwitzer, A., Wedemann, M., Moos, R., “Catalyst State Observation via the Perturbation of a Microwave Cavity Resonator”, Frequenz, Vol. 62, S. 180–184, 2008.

    Article  Google Scholar 

  19. Reiß, S., Fischerauer, G., Moos, R., “Radio frequency-based determination of the oxygen loading of automotive three-way catalysts”, Sensor 2011, Nürnberg, doi: 10.5162/sensor11/d4.1.

    Google Scholar 

  20. Reiß, S., Wedemann, M., Spörl, M., Fischerauer, G., Moos, R., “Effects of H2O, CO2, CO, and flow rates on the RF-based monitoring of three-way catalysts”, Sensor Letters, Vol. 9, S. 316–320, 2011.

    Article  Google Scholar 

  21. Beulertz, G., Votsmeier, M., Herbst, F., Moos, R., “Replacing the lambda probe by radio frequency-based in-operando three-way catalyst oxygen loading detection”, The 14th International Meeting on Chemical Sensors, Nürnberg, 2012, doi: 10.5162/ IMCS2012/P2.2.7.

    Google Scholar 

  22. Schödel, S., Moos, R., Votsmeier, M., Fischerauer, G., “SI-Engine Control With Microwave-Assisted Direct Observation of Oxygen Storage Level in Three-Way Catalysts“, IEEE Transactions on Control Systems Technology, Vol. 22, S. 23462353, 2014.

    Article  Google Scholar 

  23. Reiß, S., Spörl, M., Fischerauer, G., Moos, R., “Realabgastauglichkeit einer HF-gestützten Automobilabgasdiagnose”, 9. Dresdner Sensor-Symposium, 7.-9.12. 2009, Dresden, S. 263-266, 2009.

    Google Scholar 

  24. Beulertz, G., Votsmeier, M., Moos, R., “Effect of propene, propane, and methane on conversion and oxidation state of three-way catalysts: A microwave cavity perturbation study”, Applied Catalysis B: Environmental, Vol. 165, S. 369–377, 2015.

    Article  Google Scholar 

  25. Beulertz, G., Votsmeier, M., Moos, R., “In operando Detection of Three-Way Catalyst Aging by a Microwave-Based Method: Initial Studies”, Applied Sciences. Vol. 5, S. 174–186, 2015.

    Article  Google Scholar 

  26. Dietrich, M., Jahn, C., Lanzerath, P., Moos, R., “Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines”, Sensors, Vol. 15, S. 21971–21988, 2015.

    Article  Google Scholar 

  27. Balland, J., Parmentier, M., Schmitt, J., “Control of a Combined SCR on Filter and Under-Floor SCR System for Low Emission Passenger Cars”, SAE International Journal of Engines Vol., 7, S. 1252–1261, 2014.

    Article  Google Scholar 

  28. Ciardelli, C., Nova, I., Tronconi, E., Chatterjee, D., Bandl-Konrad, B., Weibel, M., Krutzsch, B., “Reactivity of NO/NO2-NH3 SCR system for diesel exhaust aftertreatment: Identification of the reaction network as a function of temperature and NO2 feed content”, Applied Catalysis B: Environmental, Vol. 70, S. 80–90, 2007.

    Article  Google Scholar 

  29. Schuler, A., Votsmeier, M., Kiwic, P., Gieshoff, J., Hautpmann, W., Drochner, A., Vogel, H., “NH3-SCR on Fe zeolite catalysts - From model setup to NH3 dosing”, Chemical Engineering Journal, Vol. 154, S. 333–340, 2009.

    Article  Google Scholar 

  30. Herman, A., Wu, M., Cabush, D., Shost, M., “Model Based Control of SCR Dosing and OBD Strategies with Feedback from NH3 Sensors”, SAE International Journal of Fuels and Lubricants, Vol. 2, S. 375–385, 2009.

    Article  Google Scholar 

  31. Simons, T., Simon, U., “Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNOx-SCR”, Beilstein Journal of Nanotechnology, Vol. 3, S. 667673, 2012.

    Article  Google Scholar 

  32. Simon, U., Franke, M.E., “Electrical properties of nanoscaled host/guest compounds”, Microporous Mesoporous Materials, Vol. 41, S. 1–36, 2000.

    Article  Google Scholar 

  33. Franke, M.E., Simon, U., “Solvate-supported proton transport in zeolites”, ChemPhysChem, Vol. 5, S. 465–472, 2004.

    Article  Google Scholar 

  34. Pihl, J., Daw, S., “NH3 storage isotherms: a path toward better models of NH3 storage on zeolite SCR catalysts”, 2014 DOE Crosscut Workshop on Lean Emissions Reduction Simulation, 29.4.-1.5.2014, Dearborn, MI, USA, 2014.

    Google Scholar 

  35. Rauch, D., Kubinski, D., Cavataio, G., Upadhyay, D., Moos, R., “Ammonia Loading Detection of Zeolite SCR Catalysts using a Radio Frequency based Method”, SAE International Journal of Engines, Vol. 8, S. 1126–1135, 2015.

    Article  Google Scholar 

  36. Rauch, D., Kubinski, D., Simon, U., Moos, R., “Detection of the ammonia loading of a Cu Chabazite SCR catalyst by a radio frequency-based method”, Sensors and Actuators B: Chemical, Vol. 205, S. 88–93, 2014.

    Article  Google Scholar 

  37. Deutschmann, O., Grunwaldt, J.-D., “Abgasnachbehandlung in mobilen Systemen: Stand der Technik, Herausforderungen und Perspektiven“, Chemie Ingenieur Technik”, Vol. 85, S. 595–617, 2013.

    Article  Google Scholar 

  38. Roy, S., Baiker, A., “NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance”, Chemical Reviews, Vol. 109, S. 4054–4091, 2009.

    Article  Google Scholar 

  39. Groß, A., Bishop, S.R., Yang, D.J., Tuller, H.L., Moos, R., “The electrical properties of NOx-storing carbonates during NOx exposure”, Solid State Ionics, Vol. 225, S. 317–323, 2012.

    Article  Google Scholar 

  40. Birkhofer, T., Knezevic, A., Leye, H., Moos, R., Plog, C., Ried, T., Voigtländer, D., “Verfahren zur Zustandserkennung eines NOx-Speicherkatalysators”, Deutsche Patentschrift DE 10064499 B 4, 2000.

    Google Scholar 

  41. Fremerey, P., Reiß, S., Geupel, A., Fischerauer, G., Moos, R., “Determination of the NOx Loading of an Automotive Lean NOx Trap by Directly Monitoring the Electrical Properties of the Catalyst Material Itself’, Sensors, Vol. 11, S. 8261–8280, 2011.

    Article  Google Scholar 

  42. Casapu, M., Grunwaldt, J.-D., Maciejewski, M., Baiker, A., Eckhoff, S., Göbel, U., Wittrock, M., âThe fate of platinum in Pt/Ba/CeO2 and Pt/Ba/Al2O3 catalysts during thermal ageing†, Journal of Catalysis, Vol. 251, S. 28–38, 2007.

    Article  Google Scholar 

  43. Feulner, M., Hagen, G., Müller, A., Brüggemann, D., Moos, R., “In-Operation Monitoring of the Soot Load of Diesel Particulate Filters with a Microwave Method”, The 14th International Meeting on Chemical Sensors, Nürnberg, 2012, doi: 10.5162/ IMCS2012/P2.2.6.

    Google Scholar 

  44. Fischerauer, G., Förster, M., Moos, R., “Sensing the Soot Load in Automotive Diesel Particulate Filters by Microwave Methods”, Measurement Science and Technology, Vol. 21, S. 035108, 2012.

    Article  Google Scholar 

  45. Hansson, J., and Ingeström, V., “A Method for Estimating Soot Load in a DPF Using an RF-based Sensor”, Master Thesis, U of Linköping, Sweden, 2012, http://liu.diva-portal.org/smash/recordjsf?pid=diva2:535349, letzter Zugriff am 12.12.2015.

  46. Sappok, A., Bromberg, L., “Development of Radio Frequency Sensing for In-Situ Diesel Particulate Filter State Monitoring and Aftertreatment System Control”, ASME Internal Combustion Engine Division’s 2013 Fall Technical Conference, ICEF2013-19199, 2013.

    Google Scholar 

  47. Sappok, A., Bromberg, L., Parks, J., Prikhodko, V., “Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor”, SAE Technical Paper 2010-01-2126, 2010, doi: 10.4271/2010-01-2126.

    Google Scholar 

  48. Amphenol Corporation, “Accusolve Diesel Particulate Filter (DPF) Soot Sensor“, http://www.amphenol-sensors.com/en/component/edocman/73-temperature-sensors/114-transportation-assemblies/127-automotive-temperature-sensors/210-thermometrics-accusolve-diesel-particulate-filter-dpf-soot-sensor, letzter Zugriff am 12.12.2015.

  49. Knitt, A.A., DeCou, M.T., “Radio frequency particulate sensing system”, US Patentschrift US 7,253, 641, 2006.

    Google Scholar 

  50. Walton, F.B., “Method and system for detecting soot and ash concentrations in a filter”, US Patentschrift US 7,157, 919, 2005.

    Google Scholar 

  51. Gonze, E.V., Kirby, K.W., Phelps, A., Gregoire, D.J., ’’Apparatus and Method for Onboard Performance Monitoring of Exhaust Gas Particulate Filter”, US Patentschrift US 8,650, 857, 2009.

    Google Scholar 

  52. Sappok, A., Bromberg, L., “Radio Frequency Diesel Particulate Filter Soot and Ash Level Sensors: Enabling Adaptive Controls for Heavy-Duty Diesel Applications”, SAE International Journal of Commercial Vehicles, Vol. 7, S. 468–477, 2014.

    Article  Google Scholar 

  53. Nanjundaswamy, H., Nagaraju, V, Wu, Y., Koehler, E., Sappok, A., Ragaller, P., Bromberg, L., “Advanced RF Particulate Filter Sensing and Controls for Efficient Aftertreatment Management and Reduced Fuel Consumption”, SAE Technical Paper 2015-01-0996, 2015, doi: 10.4271/2015-01-0996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moos, R. (2016). Mikrowellengestützte Systeme zur Zustandserkennung von Abgaskatalysatoren und Abgasfiltern im Überblick. In: Tille, T. (eds) Automobil-Sensorik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48944-4_6

Download citation

Publish with us

Policies and ethics