Zusammenfassung
Eine strenge Definition des Begriffs „nanoelektronisches Bauelement“ existiert bis heute nicht. Im Allgemeinen versteht man darunter jedoch elektronische Bauelemente, bei denen zumindest in einer örtlichen Dimension die Abmessungen einer „entscheidenden“ Komponente im Nanometerbereich liegen. Die Relativität dieser Definition kann man zum Beispiel anhand der Weiterentwicklung der Silizium-MOS-Technologie erläutern. Seit den frühen Anfängen dieser Technologie hat die Schichtdicke des Gate-Isolators Abmessungen im Nanometerbereich (1980 ca. 100 nm, heutzutage unter 3 nm). Vom MOS-Transistor als nanoelektronisches Bauelement spricht man aber erst, seitdem die Kanallänge Abmessungen unter 100 nm besitzt. Im Falle des Quantenpunktlasers überschreiten die Bauelementdimensionen in allen drei Raumrichtungen die Nanometerskala. Allerdings haben in diesem Fall die in die aktive Schicht eingebetteten Quantenpunkte, in welchen der für das Funktionieren des Lasers entscheidende Prozess der strahlenden Rekombination stattfindet, Nanometerdimensionen. Unter Anwendung der oben angegebenen Definition sind im Prinzip auch alle Quanteneffekt-Bauelemente als nanoelektronische Bauelemente zu bezeichnen. Im vorliegenden Kapitel beschränken wir uns hingegen auf elektronische Bauelemente, welche auf Nanoteilchen als aktives Material basiert sind. Während bei Drucklegung der ersten Ausgabe dieses Buches im Jahre 2003 die „elektronische Nanowelt“ noch gut überschaubar war, hat die Vielfalt auf diesem Gebiet in den letzten 12 Jahren zu sehr zugenommen, um hier komplett dargestellt werden zu können. Deshalb werden wir uns hier auf die Anwendungen von Kohlenstoffnanoröhren (CNTs) in elektronischen Bauelementen beschränken, und nicht die ganze Vielfalt der Bauelemente, basierend auf anderen Nanomaterialien, z. B. Graphen, Fulleren, Silizium-Nanodrähten, MoS2, etc. darzustellen.
This is a preview of subscription content, access via your institution.
Buying options


































Literatur
Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors – a review. IEEE Sens J 7:266–284
Dillon AC (2010) Carbon nanotubes for photoconversion and electrical energy storage. Chem Rev 110:6856–6872
Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, posttreatment, and bulk applications for composites and energy storage. Small 9:1237–1265
Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52
Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449
Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320
Inami N, Mohamed MA, Ehikoh E, Fujiwara A (2008) Device characteristics of carbon nanotube transistor fabricated by direct growth method. Appl Phys Lett 92:243115
Dresselhaus MS, Dresselhaus G, Avouris P (Hrsg) (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer
Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5:443–450
Wang C, Qian L, Xu W, Nie S, Gu W, Zhang J, Zhao J, Lin J, Chena Z, Cui Z (2013) High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes. Nanoscale 5:4156–4161
Brady GJ, Joo Y, Roy SS, Gopalan P, Arnold MS (2014) High performance transistors via aligned polyfluorene-sorted carbon nanotubes transistors. Appl Phys Lett 104:083107
Czerw R, Terrones M, Charlier J-C, Blasé X, Foley B, Kamalakaran R, Grobert N, Terrones H, Ajayan PM, Blau W, Tekleab D, Rühle M, Carroll DL (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 9:457–460
Kaminishi D, Ozaki H, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2005) Air-stable n-type carbon nanotube field-effect transistors with Si3N4 passivation films fabricated by catalytic chemical vapor deposition. Appl Phys Lett 86:113115
Zhang Z, Wang S, Ding L, Liang X, Pei T, Shen J, Xu H, Chen Q, Cui R, Li Y, Peng L-M (2008) Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett 8:3696–3701
Ding L, Zhang Z, Liang S, Pei T, Wang S, Li Y, Zhou W, Liu J, Peng L-M (2012) CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat Commun 3:677. https://doi.org/10.1038/ncomms1682
Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Wong H-SP, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530
Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758–762
Leonard F, Steward DA (2006) Properties of short channel ballistic carbon nanotube transistors with ohmic contacts. Nanotechnology 17:4699–4705
Franklin AD, Koswatta SO, Farmer DB, Smith JT, Gignac L, Breslin CM, Han SJ, Tulevski GS, Miyazoe H, Haensch W, Tersoff J (2013) Carbon nanotube complementary wrap-gate transistors. Nano Lett 13:2090–2095
Xue W, Cui T (2009) Thin-film transistors with controllable mobilities based on layer-by-layer self-assembled carbon nanotube composites. Solid-State Electron 53:1050–1055
Sajed F, Rutherglen C (2013) All-printed and transparent single walled carbon nanotube thin film transistor devices. Appl Phys Lett 103:143303
Alam K, Lake R (2005) Performance of 2 nm gate length carbon nanotube field-effect transistors with source/drain underlaps. Appl Phys Lett 87:073104
Le Louarn A, Kapche F, Bethoux J-M, Happy H, Dambrine G, Derycke V, Chenevier P, Izard N, Goffman MF, Bourgoin J-P (2007) Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl Phys Lett 90:233108
Kang WP, Wong YM, Davidson JL, Kerns DV, Choi BK, Huang JH, Galloway KF (2006) Carbon nanotubes vacuum field emission differential amplifier integrated circuits. Electron Lett 42:210–211
Neitzert HC, Spinillo P, Bellone S, Licciardo GD, Tucci M, Roca F, Gialanella L, Romano M (2004) Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell. Sol Energy Mater Sol Cells 83:435–446
Wei BQ, Vajtai R, Choi YY, Ajayan PM, Zhu HW, Xu CL, Wu DH (2002) Structural characterizations of long single-walled carbon nanotube strands. Nano Lett 2:1105–1107
Wei J, Zhu H, Wu D, Wei B (2004) Carbon nanotube filaments in household light bulbs. Appl Phys Lett 84:4869–4871
Yu D, Dai L (2010) Voltage-induced incandescent light emission from large-area graphene films. Appl Phys Lett 96:143107
Misewich JA, Martel R, Avouris P, Tsang JC, Heinze S, Tersoff J (2003) Electrically induced optical emission from a carbon nanotube FET. Science 300:783–786
Adam E, Aguirre CM, Marty L, St-Antoine BC, Meunier F, Desjardins P, Ménard D, Martel R (2008) Electroluminescence from single-wall carbon nanotube network transistors. Nano Lett 8:2351–2355
Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309
Yu D, Liu H, Peng L-M, Wang S (2015) Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films. ACS Appl Mater Interfaces 7:3462–3467
Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87:073101
Chen C, Zhang W, Kong ES-W, Zhang Y (2009) Carbon nanotube photovoltaic device with asymmetrical contacts. Appl Phys Lett 94:263501
Marcus MS, Simmons JM, Castellini OM, Hamers RJ, Eriksson MA (2006) Photogating carbon nanotube transistors. J Appl Phys 100:084306
Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K (2009) A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci USA 106:604–6047
Hu L, Hecht DS, Grüner G (2009) Infrared transparent carbon nanotube thin films. Appl Phys Lett 94:081103
Aguirre CM, Auvray S, Pigeon S, Izquierdo R, Desjardins P, Martel R (2006) Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl Phys Lett 88:183104
Ulbricht R, Lee SB, Jiang X, Inoue K, Zhang M, Fang S, Baughman RH, Zakhidov AA (2007) Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells. Sol Energy Mater Sol Cells 91:416–419
Schwertheim S, Leinhos M, Müller T, Fahrner WR, Neitzert HC (2008) PEDOT with carbon nanotubes as a replacement for the transparent conductive coating (ITO) of a heterojunction solar cell. In: Proceedings of the 33rd IEEE photovoltaic specialist conference, San Diego, S 308–312
Cho D-Y, Eun K, Choa S-H, Kim H-K (2014) Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon 66:530–538
Li H, Loke WK, Zhang Q, Yoon SF (2010) Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Appl Phys Lett 96:043501
Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S (2015) Achievement of more than 25 % conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovoltaics 4:1433–1435
Neitzert HC, Hirsch W, Swiatkowski C, Kunst M (1990) In-situ investigation of optoelectronic properties of crystalline silicon/amorphous silicon heterojunctions. In: Matsunami H, Kyoto (Hrsg) Proceedings of the 5th international photovoltaic science and engineering conference, S 825–827
Neitzert HC, Hirsch W, Kunst M (1993) Structural changes of a-Si:H films on crystalline silicon substrates during deposition. Phys Rev B 47:4080–4083
Fahrner WR, Mueller T, Schwertheim S, Wuensch F, Neitzert HC, Huang H (2013) Amorphous silicon/crystalline silicon heterojunction solar cells. Springer, Berlin
Wang W, Schiff EA (2007) Polyaniline on crystalline silicon heterojunction solar cells. Appl Phys Lett 91:133504
Jia Y, Wei J, Wang K, Cao A, Shu A, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L, Liu W, Wang Z, Luo J, Wu D (2008) Nanotube-silicon heterojunction solar cells. Adv Mater 20:4594–4598
Neitzert HC, Schwertheim S, Meusinger K, Leinhos M, Fahrner WR (2009) Heterojunction solar cell fabricated by spin-coating of a CNT/PEDOT: PSS heteroemitter on top of a crystalline silicon absorber. Nanotechnology IV. SPIE Proc 7364:73460 L-1–73460 L-7
Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett 13:95–99
Wolff K (2011) Integrationstechniken für Feldeffekttransistoren mit halbleitenden Nanopartikeln. Vieweg-Teubner, Wiesbaden
Lee S, Jeong Y, Jeong S, Lee J, Jeon M, Moon J (2008) Solution-processed ZnO nanoparticle-based semiconductor oxide thin-film transistors. Superlattice Microstruct 44(6):761–769. https://doi.org/10.1016/j.spmi.2008.09.002
Hilleringmann U, Wolff K, Assion F, Vidor FF, Wirth GI (2011) Semiconductor nanoparticles for electronic device integration on foils, Africon, ISSN 2153–0025, NF-001074, S 6
Sun B, Sirringhaus H (2005) Solution-processed zinc oxide filed-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 5:2408–2413
Fleischhaker F, Wloka V, Hennig I (2010) ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates. J Mater Chem 20:6622–6625
Lee HS, Choo JD, Han HS, Kim HJ, Son RY, Jang J (2007) High performance organic thin-film transistors with photopatterned gate dielectric. Appl Phys Lett 90(3):033502–033503
Vidor F, Wirth G, Assion F, Wolff K, Hilleringmann U (2013) Characterization and analysis of the hysteresis in a ZnO nanoparticle thin-film transistor. IEEE Trans Nanotechnol 12:296–303
Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793
Paetzold UW (2013) Light trapping with plasmonic back contacts in thin-film silicon solar cells. PhD thesis. Forschungszentrum Jülich
Fahrner WR, Zhou L, Huang H (2013) A method for fabrication of plasmons for the enhancement of the solar cell efficiency, application date: 23.04.2013, publication date: 20.11.2013, pending (Application number: 201310141060.0, Publication number: CN103400883A)
Paetzold UW et al (2012) Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts. J Photon Energy 2(1):027002. https://doi.org/10.1117/1.JPE.2.027002
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Deutschland
About this chapter
Cite this chapter
Neitzert, HC., Hilleringmann, U., Fahrner, W.R. (2017). Auf Nanostrukturen beruhende innovative elektronische Bauelemente. In: Fahrner, W. (eds) Nanotechnologie und Nanoprozesse. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48908-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-662-48908-6_9
Published:
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-48907-9
Online ISBN: 978-3-662-48908-6
eBook Packages: Computer Science and Engineering (German Language)