Skip to main content

Auf Nanostrukturen beruhende innovative elektronische Bauelemente

  • Chapter
  • First Online:
Book cover Nanotechnologie und Nanoprozesse

Zusammenfassung

Eine strenge Definition des Begriffs „nanoelektronisches Bauelement“ existiert bis heute nicht. Im Allgemeinen versteht man darunter jedoch elektronische Bauelemente, bei denen zumindest in einer örtlichen Dimension die Abmessungen einer „entscheidenden“ Komponente im Nanometerbereich liegen. Die Relativität dieser Definition kann man zum Beispiel anhand der Weiterentwicklung der Silizium-MOS-Technologie erläutern. Seit den frühen Anfängen dieser Technologie hat die Schichtdicke des Gate-Isolators Abmessungen im Nanometerbereich (1980 ca. 100 nm, heutzutage unter 3 nm). Vom MOS-Transistor als nanoelektronisches Bauelement spricht man aber erst, seitdem die Kanallänge Abmessungen unter 100 nm besitzt. Im Falle des Quantenpunktlasers überschreiten die Bauelementdimensionen in allen drei Raumrichtungen die Nanometerskala. Allerdings haben in diesem Fall die in die aktive Schicht eingebetteten Quantenpunkte, in welchen der für das Funktionieren des Lasers entscheidende Prozess der strahlenden Rekombination stattfindet, Nanometerdimensionen. Unter Anwendung der oben angegebenen Definition sind im Prinzip auch alle Quanteneffekt-Bauelemente als nanoelektronische Bauelemente zu bezeichnen. Im vorliegenden Kapitel beschränken wir uns hingegen auf elektronische Bauelemente, welche auf Nanoteilchen als aktives Material basiert sind. Während bei Drucklegung der ersten Ausgabe dieses Buches im Jahre 2003 die „elektronische Nanowelt“ noch gut überschaubar war, hat die Vielfalt auf diesem Gebiet in den letzten 12 Jahren zu sehr zugenommen, um hier komplett dargestellt werden zu können. Deshalb werden wir uns hier auf die Anwendungen von Kohlenstoffnanoröhren (CNTs) in elektronischen Bauelementen beschränken, und nicht die ganze Vielfalt der Bauelemente, basierend auf anderen Nanomaterialien, z. B. Graphen, Fulleren, Silizium-Nanodrähten, MoS2, etc. darzustellen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Mahar B, Laslau C, Yip R, Sun Y (2007) Development of carbon nanotube-based sensors – a review. IEEE Sens J 7:266–284

    Article  Google Scholar 

  2. Dillon AC (2010) Carbon nanotubes for photoconversion and electrical energy storage. Chem Rev 110:6856–6872

    Article  Google Scholar 

  3. Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, posttreatment, and bulk applications for composites and energy storage. Small 9:1237–1265

    Article  Google Scholar 

  4. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  Google Scholar 

  5. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447–2449

    Article  Google Scholar 

  6. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    Article  Google Scholar 

  7. Inami N, Mohamed MA, Ehikoh E, Fujiwara A (2008) Device characteristics of carbon nanotube transistor fabricated by direct growth method. Appl Phys Lett 92:243115

    Article  Google Scholar 

  8. Dresselhaus MS, Dresselhaus G, Avouris P (Hrsg) (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer

    Google Scholar 

  9. Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5:443–450

    Article  Google Scholar 

  10. Wang C, Qian L, Xu W, Nie S, Gu W, Zhang J, Zhao J, Lin J, Chena Z, Cui Z (2013) High performance thin film transistors based on regioregular poly(3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes. Nanoscale 5:4156–4161

    Article  Google Scholar 

  11. Brady GJ, Joo Y, Roy SS, Gopalan P, Arnold MS (2014) High performance transistors via aligned polyfluorene-sorted carbon nanotubes transistors. Appl Phys Lett 104:083107

    Article  Google Scholar 

  12. Czerw R, Terrones M, Charlier J-C, Blasé X, Foley B, Kamalakaran R, Grobert N, Terrones H, Ajayan PM, Blau W, Tekleab D, Rühle M, Carroll DL (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 9:457–460

    Article  Google Scholar 

  13. Kaminishi D, Ozaki H, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2005) Air-stable n-type carbon nanotube field-effect transistors with Si3N4 passivation films fabricated by catalytic chemical vapor deposition. Appl Phys Lett 86:113115

    Article  Google Scholar 

  14. Zhang Z, Wang S, Ding L, Liang X, Pei T, Shen J, Xu H, Chen Q, Cui R, Li Y, Peng L-M (2008) Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett 8:3696–3701

    Article  Google Scholar 

  15. Ding L, Zhang Z, Liang S, Pei T, Wang S, Li Y, Zhou W, Liu J, Peng L-M (2012) CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat Commun 3:677. https://doi.org/10.1038/ncomms1682

    Article  Google Scholar 

  16. Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Wong H-SP, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530

    Article  Google Scholar 

  17. Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758–762

    Article  Google Scholar 

  18. Leonard F, Steward DA (2006) Properties of short channel ballistic carbon nanotube transistors with ohmic contacts. Nanotechnology 17:4699–4705

    Article  Google Scholar 

  19. Franklin AD, Koswatta SO, Farmer DB, Smith JT, Gignac L, Breslin CM, Han SJ, Tulevski GS, Miyazoe H, Haensch W, Tersoff J (2013) Carbon nanotube complementary wrap-gate transistors. Nano Lett 13:2090–2095

    Article  Google Scholar 

  20. Xue W, Cui T (2009) Thin-film transistors with controllable mobilities based on layer-by-layer self-assembled carbon nanotube composites. Solid-State Electron 53:1050–1055

    Article  Google Scholar 

  21. Sajed F, Rutherglen C (2013) All-printed and transparent single walled carbon nanotube thin film transistor devices. Appl Phys Lett 103:143303

    Article  Google Scholar 

  22. Alam K, Lake R (2005) Performance of 2 nm gate length carbon nanotube field-effect transistors with source/drain underlaps. Appl Phys Lett 87:073104

    Article  Google Scholar 

  23. Le Louarn A, Kapche F, Bethoux J-M, Happy H, Dambrine G, Derycke V, Chenevier P, Izard N, Goffman MF, Bourgoin J-P (2007) Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl Phys Lett 90:233108

    Article  Google Scholar 

  24. Kang WP, Wong YM, Davidson JL, Kerns DV, Choi BK, Huang JH, Galloway KF (2006) Carbon nanotubes vacuum field emission differential amplifier integrated circuits. Electron Lett 42:210–211

    Article  Google Scholar 

  25. Neitzert HC, Spinillo P, Bellone S, Licciardo GD, Tucci M, Roca F, Gialanella L, Romano M (2004) Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell. Sol Energy Mater Sol Cells 83:435–446

    Article  Google Scholar 

  26. Wei BQ, Vajtai R, Choi YY, Ajayan PM, Zhu HW, Xu CL, Wu DH (2002) Structural characterizations of long single-walled carbon nanotube strands. Nano Lett 2:1105–1107

    Article  Google Scholar 

  27. Wei J, Zhu H, Wu D, Wei B (2004) Carbon nanotube filaments in household light bulbs. Appl Phys Lett 84:4869–4871

    Article  Google Scholar 

  28. Yu D, Dai L (2010) Voltage-induced incandescent light emission from large-area graphene films. Appl Phys Lett 96:143107

    Article  Google Scholar 

  29. Misewich JA, Martel R, Avouris P, Tsang JC, Heinze S, Tersoff J (2003) Electrically induced optical emission from a carbon nanotube FET. Science 300:783–786

    Article  Google Scholar 

  30. Adam E, Aguirre CM, Marty L, St-Antoine BC, Meunier F, Desjardins P, Ménard D, Martel R (2008) Electroluminescence from single-wall carbon nanotube network transistors. Nano Lett 8:2351–2355

    Article  Google Scholar 

  31. Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309

    Article  Google Scholar 

  32. Yu D, Liu H, Peng L-M, Wang S (2015) Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films. ACS Appl Mater Interfaces 7:3462–3467

    Article  Google Scholar 

  33. Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87:073101

    Article  Google Scholar 

  34. Chen C, Zhang W, Kong ES-W, Zhang Y (2009) Carbon nanotube photovoltaic device with asymmetrical contacts. Appl Phys Lett 94:263501

    Article  Google Scholar 

  35. Marcus MS, Simmons JM, Castellini OM, Hamers RJ, Eriksson MA (2006) Photogating carbon nanotube transistors. J Appl Phys 100:084306

    Article  Google Scholar 

  36. Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K (2009) A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci USA 106:604–6047

    Article  Google Scholar 

  37. Hu L, Hecht DS, Grüner G (2009) Infrared transparent carbon nanotube thin films. Appl Phys Lett 94:081103

    Article  Google Scholar 

  38. Aguirre CM, Auvray S, Pigeon S, Izquierdo R, Desjardins P, Martel R (2006) Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl Phys Lett 88:183104

    Article  Google Scholar 

  39. Ulbricht R, Lee SB, Jiang X, Inoue K, Zhang M, Fang S, Baughman RH, Zakhidov AA (2007) Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells. Sol Energy Mater Sol Cells 91:416–419

    Article  Google Scholar 

  40. Schwertheim S, Leinhos M, Müller T, Fahrner WR, Neitzert HC (2008) PEDOT with carbon nanotubes as a replacement for the transparent conductive coating (ITO) of a heterojunction solar cell. In: Proceedings of the 33rd IEEE photovoltaic specialist conference, San Diego, S 308–312

    Google Scholar 

  41. Cho D-Y, Eun K, Choa S-H, Kim H-K (2014) Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon 66:530–538

    Article  Google Scholar 

  42. Li H, Loke WK, Zhang Q, Yoon SF (2010) Physical device modeling of carbon nanotube/GaAs photovoltaic cells. Appl Phys Lett 96:043501

    Article  Google Scholar 

  43. Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S (2015) Achievement of more than 25 % conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovoltaics 4:1433–1435

    Article  Google Scholar 

  44. Neitzert HC, Hirsch W, Swiatkowski C, Kunst M (1990) In-situ investigation of optoelectronic properties of crystalline silicon/amorphous silicon heterojunctions. In: Matsunami H, Kyoto (Hrsg) Proceedings of the 5th international photovoltaic science and engineering conference, S 825–827

    Google Scholar 

  45. Neitzert HC, Hirsch W, Kunst M (1993) Structural changes of a-Si:H films on crystalline silicon substrates during deposition. Phys Rev B 47:4080–4083

    Article  Google Scholar 

  46. Fahrner WR, Mueller T, Schwertheim S, Wuensch F, Neitzert HC, Huang H (2013) Amorphous silicon/crystalline silicon heterojunction solar cells. Springer, Berlin

    Book  Google Scholar 

  47. Wang W, Schiff EA (2007) Polyaniline on crystalline silicon heterojunction solar cells. Appl Phys Lett 91:133504

    Article  Google Scholar 

  48. Jia Y, Wei J, Wang K, Cao A, Shu A, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B, Wang L, Liu W, Wang Z, Luo J, Wu D (2008) Nanotube-silicon heterojunction solar cells. Adv Mater 20:4594–4598

    Article  Google Scholar 

  49. Neitzert HC, Schwertheim S, Meusinger K, Leinhos M, Fahrner WR (2009) Heterojunction solar cell fabricated by spin-coating of a CNT/PEDOT: PSS heteroemitter on top of a crystalline silicon absorber. Nanotechnology IV. SPIE Proc 7364:73460 L-1–73460 L-7

    Google Scholar 

  50. Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett 13:95–99

    Article  Google Scholar 

  51. Wolff K (2011) Integrationstechniken für Feldeffekttransistoren mit halbleitenden Nanopartikeln. Vieweg-Teubner, Wiesbaden

    Book  Google Scholar 

  52. Lee S, Jeong Y, Jeong S, Lee J, Jeon M, Moon J (2008) Solution-processed ZnO nanoparticle-based semiconductor oxide thin-film transistors. Superlattice Microstruct 44(6):761–769. https://doi.org/10.1016/j.spmi.2008.09.002

    Article  Google Scholar 

  53. Hilleringmann U, Wolff K, Assion F, Vidor FF, Wirth GI (2011) Semiconductor nanoparticles for electronic device integration on foils, Africon, ISSN 2153–0025, NF-001074, S 6

    Google Scholar 

  54. Sun B, Sirringhaus H (2005) Solution-processed zinc oxide filed-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 5:2408–2413

    Article  Google Scholar 

  55. Fleischhaker F, Wloka V, Hennig I (2010) ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates. J Mater Chem 20:6622–6625

    Article  Google Scholar 

  56. Lee HS, Choo JD, Han HS, Kim HJ, Son RY, Jang J (2007) High performance organic thin-film transistors with photopatterned gate dielectric. Appl Phys Lett 90(3):033502–033503

    Article  Google Scholar 

  57. Vidor F, Wirth G, Assion F, Wolff K, Hilleringmann U (2013) Characterization and analysis of the hysteresis in a ZnO nanoparticle thin-film transistor. IEEE Trans Nanotechnol 12:296–303

    Article  Google Scholar 

  58. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793

    Article  Google Scholar 

  59. Paetzold UW (2013) Light trapping with plasmonic back contacts in thin-film silicon solar cells. PhD thesis. Forschungszentrum Jülich

    Google Scholar 

  60. Fahrner WR, Zhou L, Huang H (2013) A method for fabrication of plasmons for the enhancement of the solar cell efficiency, application date: 23.04.2013, publication date: 20.11.2013, pending (Application number: 201310141060.0, Publication number: CN103400883A)

    Google Scholar 

  61. Paetzold UW et al (2012) Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts. J Photon Energy 2(1):027002. https://doi.org/10.1117/1.JPE.2.027002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang R. Fahrner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Neitzert, HC., Hilleringmann, U., Fahrner, W.R. (2017). Auf Nanostrukturen beruhende innovative elektronische Bauelemente. In: Fahrner, W. (eds) Nanotechnologie und Nanoprozesse. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48908-6_9

Download citation

Publish with us

Policies and ethics