Zusammenfassung
Die Übersicht zu den technologischen Verfahren der Nanotechnolgie beinhaltet die Nanopolitur, die Trockenätztechniken und Lithographieverfahren, fokussierte Ionenstrahltechniken, Nano-Imprint- und Rastermikroskopie. Anhand von Beispielen werden die jeweiligen Techniken erläutert und ihre Einsatzgebiete vorgestellt.
This is a preview of subscription content, access via your institution.
Buying options


















































Literatur
Zaitsev AM, Kosaca G, Richarz B, Raiko V, Job R, Fries T, Fahrner WR (1998) Thermochemical polishing of CVD diamond films. Diamond Relat Mater 7:1108
Weima JA, Zaitsev AM, Job R, Kosaca GC, Blum F, Grabosch G, Fahrner WR (1999) Nano-polishing and subsequent optical characterization of CVD polycrystalline diamond films. In: Proceedings of 25th annual conference of IEEE Industrial Electronics Society. IECON, San Jose, S 50
Weima JA, Fahrner WR, Job R (2001) Experimental investigation of the parameter dependency of the removal rate of thermochemically polished CVD diamonds. J Electrochem Soc 5:112
Weima JA, Fahrner WR, Job R (2001) A model of the thermochemical polishing of cvd diamond films on transition metals with emphasis on steel. J Electrochem Soc (submitted)
Weima JA, Job R, Fahrner WR (2002) Thermochemical beveling of CVD diamond films intended for precision cutting and measurement applications. Diamond Relat Mater 11:1537
Hilleringmann U (2014) Silizium-Halbleitertechnologie. Springer-Vieweg, S 65
Momose HS, Ono M, Yoshitomi T, Ohguro T, Nakamura S, Saito M, Iwai H (1996) 1.5 nm direct-tunneling gate oxide Si MOSFET’s. IEEE Trans Electron Devices ED43:1233
Fa (2001) Oxford instruments/plasma technology. www.oxfordplasma.de
Cullmann E, Cooper K, Reyerse C (1991) Optimized contact/proximity lithography. Suss Report 5(3):1–4
Goodberlet JG, Dunn BL (2000) Deep-ultraviolet contact photolithography. Microelectron Eng 53:95–99
IMEC (1999) Annual report. S 12
Zell T (2000) Lithographie. Dresdner Sommerschule Mikroelektronik
Coopmans F, Roland B (1986) Desire: a novel dry developed resist system. Proc SPIE 631:34 ff
Henderson CC, Wheeler DR, Pollagi TR, O’Connell DJ, Goldsmith JEM, Fisher A, Cardinale GF, Hutchinson JM, Rao V (1998) Top-surface imaging resists for EUV lithography. Emerging lithographic technologies II. Proc SPIE 3331:32
Nishi Y, Doering R, Dekker M (2000) WeitereInformationenunter. In: Handbook of semiconductors. New York, S 629 ff Originalbild http://www.ca.sandia.gov/news/source.NR.html. Zugegriffen am 01.2000
http://www.sandia.gov/LabNews/LN04-06-01/labnews04-06-01.pdf. Zugegriffen am 06.2016
Instituts für Lasertechnik (2000) Jahresbericht des Fraunhofer
Muray LP et al (2000) Microelectron Eng 53:271 ff
Harriott LR (1999) Scalpel: projection electron beam lithography. In: Proceedings of the 1999 IEEE particle accelerator conference, New York
Kassing R et al (2000) Phys Blätt 56:31 ff
Pfeiffer H et al (2000) PREVAIL-IBM’s E-beam technology for next-generation lithography. Proc SPIE
Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 111 ff
Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 101
Melngailis J (1993) Focused ion beam lithography. Nucl Instrum Methods 80/81:1271
Miller T, Knoblauch A, Wilbertz C, Kalbitzer S (1995) Field-ion imaging of a tungsten supertip. Appl Phys A Mater Sci Process 61:99
Prewett PD, Mair GLR (1991) Focused ion beams from liquid metal ion sources. Research Studies Press, Taunton
Bischoff L, Pilz W, Mazarov P, Wieck AD (2010) Comparison of bismuth emitting liquid metal ion sources. Appl Phys A Mater Sci Process 99:145–150
Mazarov P, Melnikov A, Wernhardt R, Wieck AD (2008) Long-life bismuth liquid metal ion source for focussed ion beam micromachining application. Appl Surf Sci 254:7401–7404
Mazarov P, Wieck AD, Bischoff L, Pilz W (2009) Alloy liquid metal ion source for carbon focused ion beams. J Vac Sci Technol B 27:L47
Pezzagna S, Wildanger D, Mazarov P, Wieck AD, Sarov Y, Rangelow I, Naydenov B, Jelezko F, Hell SW, Meijer J (2010) Nanoscale engineering and optical addressing of single spins in diamond. Small 6:2117–2121
Wieck AD, Sakai D, Kawasaki T (2011) International Patent Number WO. 122687 A1
Chou YS, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in olymers. Appl Phys Lett 67:3114
Xia Y, Whitesides GM (1998) Soft lithography. Ann Rev Mater Sci 28:153
Chou SY, Krauss PR, Zhang W, Guo L, Zhuang I (1997) Sub-10 nm lithography and applications. J Vac Sci Technol B15:2897
Ye M, Li J-X, Li J, Li W, Lu B-R, Huang G, Mei Y, Chen Y, Liu R (2012) Humido-responsive nanostructures prepared by nanoimprinting. Microelectron Eng 98:634
Moro M, Taniguchi J, Hiwasa S (2014) Fabrication of antireflection structure film by roll-to-roll ultraviolet nanoimprint lithography. J Vac Sci Technol B32:06FG09
Mills E, Cannarella J, Zhang Q, Bhadra S, Arnold CB, Chou SY (2014) Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds. J Vac Sci Technol B32:06FG10
Scheer H-C, Schulz H, Lyebyedyev D (2000) New directions in nanotechnology – imprint techniques. In: Pavesi L, Buzaneva E (Hrsg) Frontiers of nano-optoelectronic systems. Kluwer, Dordrecht, S 319
Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (2001) Nanoimprint techniques. In: Nalwa HS (Hrsg) Handbook of thin film materials, Bd 5. Academic, S 1
Schift H, Heyderman LJ (2003) Kap 3: Nanorheology; squeeze flow in hot embossing of thin films. In: Sotomayor Torres C-M (Hrsg) Nanostructure science and technology, Volume on alternative lithography. Kluwer, New York
Schift H (2007) Nanoimprint lithography. In: Bushan B (Hrsg) Springer handbook of nanotechnology. Springer, Berlin, S 239
Guo LJ (2004) Topical review: recent progress in nanoimprint and its applications. J Phys D Appl Phys 37:R123
Cross GLW (2006) Topical review: the production of nanostructures by mechanical forming. J Phys D Appl Phys 39:R262
Schift H (2008) Nanoimprint lithography: an old story in modern times? A review. J Vac Sci Technol B26:458
Schulz H, Wissen M, Bogdanski N, Scheer H-C Mattes K, Friedrich C (2005) Choice of the molecular weight of an imprint polymer for hot embossing lithography. Microelectron Eng 78–79:625
Atasoy H, Vogler M, Haatainen T, Schleunitz A, Jarzabek D, Schift H, Reuther F, Gruetzner G, Rymuza Z (2011) Novel thermoplastic polymers with improved release properties for thermal NIL. Microelectron Eng 88:1902
Schuster C, Reuther F, Kolander A, Gruetzner G (2009) mr-NIL 6000LT – Epoxy-based curing resist for combined thermal and UV nanoimprint lithography below 50 °C. Microelectron Eng 86:722
Wang S, Dhima K, Steinberg C, Papenheim M, Scheer H-C, Helfer A, Görrn P (2015) Morphology of organic semi-crystalline polymer after thermal nanoimprint. Appl Phys A Mater Sci Process 121:357
Dhima K (2014) Hybrid lithography. The combination of T-NIL and UV-L. Dissertation Universität Wuppertal, Der AndereVerlag, Uelvesbüll
Dhima K, Steinberg C, Mayer A, Wang S, Papenheim M, Scheer H-C (2014) Residual layer lithography. Microelectron Eng 123:84
Horstmann JT, Hilleringmann U, Goser KF (1998) Matching analysis of deposition defined 50-nm MOSFETs. IEEE Trans ED-45:299
Noma H, Kawata H, Yasuda M, Hirai Y, Sakamoto J (2013) Selective edge lithography for fabricating imprint molds with mixed scale patterns. J Vac Sci Technol B31:06FB03
Schift H, Spreu C, Saidani M, Bednarzik M, Gobrecht J (2009) Transparent hybrid polymer stamp copies with sub-50-nm resolution for thermal and UV-nanoimprint lithography. J Vac Sci Technol B27:2846
Papenheim M, Steinberg S, Dhima K, Wang S, Scheer H-C (2015) Flexible composite stamp for thermal nanoimprint lithography based on OrmoStamp. J Vac Sci Technol B33:06F601
Gourgon C, Perret C, Micouin G, Lazzarino F, Tortai JH, Joubert O, Grolier J-PE (2003) Influence of pattern density in nanoimprint lithography. J Vac Sci Technol B21:98
Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (1998) Problems of the nanoimprinting technique for nanometer scale pattern definition. J Vac Sci Technol B16:3917
Tormen M, Sovernigo E, Pozzato A, Pianigiani M, Tormen M (2015) Sub-100 μs nanoimprint lithography at wafer scale. Microelectron Eng 141:21
Nagato N, Hattori S, Hamaguchi T, Nakao M (2010) Rapid thermal imprinting of high-aspect-ratio nanostructures with dynamic heating of mold surface. J Vac Sci Technol B28:C6M122
Unno N, Mäkelä T, Taniguchi J (2014) Thermal roll-to-roll imprinted nanogratings on plastic film. J Vac Sci Technol B32:06FG03
Seo SM, Kim TI, Lee HH (2006) Simple fabrication of nanostructure by continuous rigiflex imprinting. Microelectron Eng 84:567
Scheer H-C, Schulz H (2001) A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectron Eng 56:311
Zimmer K, Otte L, Braun A, Rudschuck S, Friedrich H, Schulz H, Scheer H-C, Hoffmann T, Sotomayor Torres C-M, Mehnert R, Bigl F (1999) Fabrication of 3D micro- and nanostructures by replica molding and imprinting. Proc EUSPEN 1:534
Heidari B, Maximov I, Montelius L (2000) Nanoimprint at the 6 inch wafer scale. J Vac Sci Technol B18:3557
Chaix N, Gourgon C, Perret C, Landis S, Leveder T (2007) Nanoimprint lithography processes on 200 mm Si wafer for optical application: residual thickness etching anisotropy. J Vac Sci Technol B25:2346
Landis S, Reboud V, Enot T, Vizios C (2013) Three dimensional on 300 mm wafer scale nanoimprint lithography process. Microelectron Eng 110:198
Haisma J, Verheijen M, van der Heuvel K (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B14:4124
Farshchian B, Amirsageghi A, Hurst SM, Wu J, Lee J, Park S (2011) Soft UV-nanoimprint lithography on non-planar surfaces. Microelectron Eng 88:3787
Schift H, Saxer S, Park S, Padeste C, Pieles U, Gobrecht J (2005) Controlled co-evaporation of silanes for nanoimprint stamps. Nanotechnology 16:171
Steinberg C, Dhima K, Blensgens D, Mayer A, Wang S, Papenheim M, Scheer H-C, Zajadacz J, Zimmer K (2014) A scalable anti-sticking layer process via controlled evaporation. Microelectron Eng 123:4
Francone A, Iojoiu C, Poulain C, Lombard C, Pepin-Donat B, Boussey J, Zelsmann M (2010) Impact of the resist properties on the antisticking layer degradation in UV nanoimprint lithography. J Vac Sci Technol B28:C6M72
Yamashita D, Taniguchi J, Suzuki H (2012) Liftetime evaluation of release agent for ultraviolet nanoimprint lithography. Microelectron Eng 97:109
Schmitt H, Duempelmann P, Fader R, Rommel M, Bauer AJ, Frey L, Brehm M, Kraft A (2012) Life time evaluation of PDMS stamps for UV-enhanced substrate conformal imprint lithography. Microelectron Eng 98:275
Zelsmann M, Alleaume C, Truffier-Boutry D, Francone A, Beaurain A, Pelissier B, Boussey J (2010) Degradation and surfactant-aided regeneration of fluorinated anti-sticking mold treatment in UV nanoimprint lithography. Microelectron Eng 87:1029
Hiroshima H, Komuro M (2007) UV-nanoimprint with the assistance of gas condensation at atmospheric environmental pressure. J Vac Sci Technol B25:2333
Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan SV, Ekerdt J, Wilson CG (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc SPIE 3676:279
Glinsner T, Veres T, Kreindl G, Roy E, Morton K, Wiesner T, Thanner C, Treiblmayr D, Miller R, Lindner P (2010) Fully automated hot embossing process utilizing high resolution working stamps. Microelectron Eng 87:1037
Verschuuren MA (2010) Substrate conformal imprint lithography for nanophotonics. Promotion Universität Utrecht
Fader R, Rommel M, Bauer A, Rumler M, Frey L, van de Laar R, Ji R, Schömbs U (2013) Accuracy of wafer level alignment with substrate conformal imprint lithography. J Vac Sci Technol B31:06FB02
Kim HJ, Almanza-Workman M, Garcia RA, Kwon O, Jeffrey F, Braymen S, Hauschildt J, Junge K, Larson D, Stieler D, Chaiken A, Cobene B, Elder RE, Jackson WB, Mehrban J, Jeans A, Luo H, Mai P, Perlov C, Taussig C (2009) Roll-to-roll manufacturing of electronics on flexible substrates using self-aligned imprint lithography (SAIL). J Soc Inf Display 17:963
Ji R, Hornung M, Verschuuren MA, van de Laar R, van Eekelen J, Plachetka U, Moeller M, Moormann C (2010) UV-enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron Eng 87(S):963
Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13:1386
Suh KY, Park MC, Kim P (2009) Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv Funct Mater 19:2699
Steinberg C, Gubert M, Papenheim M, Wang S, Scheer H-C, Zajadacz J, Zimmer K (2015) Challenges with soft stamps for guiding of diblock copolymers. Appl Phys A Mater Sci Process 121:489
Suh KY, Lee HH (2002) Self-organized polymeric microstructures. Adv Mater 14:346
Persano L, Molle S, Girardo S, Neves AAR, Camposeo A, Stabile R, Cingolani R, Pisigniano D (2008) Soft nanopatterning on light-emitting inorganic-organic composites. Adv Funct Mater 18:2692
Suh D, Lee HH (2004) Sub-100 nm organic light-emitting diodes patterned with room temperature imprint lithography. J Vac Sci Technol B22(S):1123
Ye X, Ding Y, Duan Y, Liu H, Lu B (2010) Room-temperature capillary-imprint lithography for making micro−/nanostructures in large areas. J Vac Sci Technol B28:138
Kumar A, Biebuck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498
Xia Y, Zhao X-M, Whitesides GM (1996) Pattern transfer: self assembled monolayers as ultrathin resists. Microelectron Eng 32:255
Xia Y, Mrksich M, Kim E, Whitesides GM (1996) Microcontact printing of octadecylsiloxane on the surface of Silicon dioxide and its application in microfabrication. J Am Chem Soc 117:9576
Xia Y, Qin D, Whitesides GM (1996) Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer sized features. Adv Mater 8:1015
Schmid H, Michel B (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:3042
Heyderman LJ, Schift H, David C, Gobrecht J, Schweizer T (2000) Flow behaviour of thin polymer films used for hot embossing lithography. Microelectron Eng 54:229
Scheer H-C, Papenheim M, Dhima K, Wang S, Steinberg C (2014) Aspects of cavity filling with nanimprint. Microsyst Technol 21:1595
Scheer H-C, Mayer A, Dhima K, Wang S, Steinberg C (2013) Challenges with high aspect ratio nanoimprint. Microsyst Technol 20:1891
Yasuda M, Araki K, Taga A, Horiba A, Kawata H, Hirai Y (2011) Computational study of polymer filling process in nanoimprint lithography. Microelectron Eng 88:2188
Hua F, Gaur A, Sun Y, Word M, Jin N, Adesida I, Shim M, Shim A, Rogers JA (2006) Processing dependent behavior of soft imprint lithography on the 1-10 nm scale. IEEE Trans Nanotechnol 5:301
Mayer A, Dhima K, Wang S, Steinberg C, Papenheim M, Scheer H-C (2015) The underestimated impact of instabilities in nanoimprint. Appl Phys A Mater Sci Process 121:405
Montelius L, Heidari B, Graczyk M, Maximov I, Sarwe E-L, Ling TGI (2000) Nanoimprint and UV-lithography: mix&match process for fabrication of interdigitatednanobiosensors. Microelectron Eng 53:521
Dhima K, Steinberg C, Wang S, Papenheim M, Scheer H-C (2015) Nanoimprint combination techiques. Microelectron Eng 141:92
Schmid GM, Miller M, Brooks C, Khusnatdinov N, LaBrake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang X (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B27:573
Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524
Tan W, Kopelman R (2000) Nanoscopic optical sensors and probes. In: Nalwa HS (Hrsg) Handbook of nanostructured materials and nanotechnology, Bd 4. Academic, New York, S 621
Betzig E, Trautmann JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189
Trautman JK, Macklin JJ, Brus LE, Betzig E (1994) Near-field spectroscopy of single molecules at room temperature. Nature 369:40
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Deutschland
About this chapter
Cite this chapter
Fahrner, W.R., Hilleringmann, U., Scheer, HC., Wieck, A.D. (2017). Nanostrukturierung. In: Fahrner, W. (eds) Nanotechnologie und Nanoprozesse. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48908-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-662-48908-6_7
Published:
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-48907-9
Online ISBN: 978-3-662-48908-6
eBook Packages: Computer Science and Engineering (German Language)