Skip to main content

Nanostrukturierung

  • 3647 Accesses

Zusammenfassung

Die Übersicht zu den technologischen Verfahren der Nanotechnolgie beinhaltet die Nanopolitur, die Trockenätztechniken und Lithographieverfahren, fokussierte Ionenstrahltechniken, Nano-Imprint- und Rastermikroskopie. Anhand von Beispielen werden die jeweiligen Techniken erläutert und ihre Einsatzgebiete vorgestellt.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-48908-6_7
  • Chapter length: 76 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-662-48908-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   119.99
Price excludes VAT (USA)
Abb. 7.1
Abb. 7.2
Abb. 7.3
Abb. 7.4
Abb. 7.5
Abb. 7.6
Abb. 7.7
Abb. 7.8
Abb. 7.9
Abb. 7.10
Abb. 7.11
Abb. 7.12
Abb. 7.13
Abb. 7.14
Abb. 7.15
Abb. 7.16
Abb. 7.17
Abb. 7.18
Abb. 7.19
Abb. 7.20
Abb. 7.21
Abb. 7.22
Abb. 7.23
Abb. 7.24
Abb. 7.25
Abb. 7.26
Abb. 7.27
Abb. 7.28
Abb. 7.29
Abb. 7.30
Abb. 7.31
Abb. 7.32
Abb. 7.33
Abb. 7.34
Abb. 7.35
Abb. 7.36
Abb. 7.37
Abb. 7.38
Abb. 7.39
Abb. 7.40
Abb. 7.41
Abb. 7.42
Abb. 7.43
Abb. 7.44
Abb. 7.45
Abb. 7.46
Abb. 7.47
Abb. 7.48
Abb. 7.49

Literatur

  1. Zaitsev AM, Kosaca G, Richarz B, Raiko V, Job R, Fries T, Fahrner WR (1998) Thermochemical polishing of CVD diamond films. Diamond Relat Mater 7:1108

    CrossRef  Google Scholar 

  2. Weima JA, Zaitsev AM, Job R, Kosaca GC, Blum F, Grabosch G, Fahrner WR (1999) Nano-polishing and subsequent optical characterization of CVD polycrystalline diamond films. In: Proceedings of 25th annual conference of IEEE Industrial Electronics Society. IECON, San Jose, S 50

    Google Scholar 

  3. Weima JA, Fahrner WR, Job R (2001) Experimental investigation of the parameter dependency of the removal rate of thermochemically polished CVD diamonds. J Electrochem Soc 5:112

    Google Scholar 

  4. Weima JA, Fahrner WR, Job R (2001) A model of the thermochemical polishing of cvd diamond films on transition metals with emphasis on steel. J Electrochem Soc (submitted)

    Google Scholar 

  5. Weima JA, Job R, Fahrner WR (2002) Thermochemical beveling of CVD diamond films intended for precision cutting and measurement applications. Diamond Relat Mater 11:1537

    CrossRef  Google Scholar 

  6. Hilleringmann U (2014) Silizium-Halbleitertechnologie. Springer-Vieweg, S 65

    Google Scholar 

  7. Momose HS, Ono M, Yoshitomi T, Ohguro T, Nakamura S, Saito M, Iwai H (1996) 1.5 nm direct-tunneling gate oxide Si MOSFET’s. IEEE Trans Electron Devices ED43:1233

    Google Scholar 

  8. Fa (2001) Oxford instruments/plasma technology. www.oxfordplasma.de

  9. Cullmann E, Cooper K, Reyerse C (1991) Optimized contact/proximity lithography. Suss Report 5(3):1–4

    Google Scholar 

  10. Goodberlet JG, Dunn BL (2000) Deep-ultraviolet contact photolithography. Microelectron Eng 53:95–99

    CrossRef  Google Scholar 

  11. IMEC (1999) Annual report. S 12

    Google Scholar 

  12. Zell T (2000) Lithographie. Dresdner Sommerschule Mikroelektronik

    Google Scholar 

  13. Coopmans F, Roland B (1986) Desire: a novel dry developed resist system. Proc SPIE 631:34 ff

    CrossRef  Google Scholar 

  14. Henderson CC, Wheeler DR, Pollagi TR, O’Connell DJ, Goldsmith JEM, Fisher A, Cardinale GF, Hutchinson JM, Rao V (1998) Top-surface imaging resists for EUV lithography. Emerging lithographic technologies II. Proc SPIE 3331:32

    CrossRef  Google Scholar 

  15. Nishi Y, Doering R, Dekker M (2000) WeitereInformationenunter. In: Handbook of semiconductors. New York, S 629 ff Originalbild http://www.ca.sandia.gov/news/source.NR.html. Zugegriffen am 01.2000

  16. http://www.sandia.gov/LabNews/LN04-06-01/labnews04-06-01.pdf. Zugegriffen am 06.2016

  17. Instituts für Lasertechnik (2000) Jahresbericht des Fraunhofer

    Google Scholar 

  18. Muray LP et al (2000) Microelectron Eng 53:271 ff

    CrossRef  Google Scholar 

  19. Harriott LR (1999) Scalpel: projection electron beam lithography. In: Proceedings of the 1999 IEEE particle accelerator conference, New York

    Google Scholar 

  20. Kassing R et al (2000) Phys Blätt 56:31 ff

    CrossRef  Google Scholar 

  21. Pfeiffer H et al (2000) PREVAIL-IBM’s E-beam technology for next-generation lithography. Proc SPIE

    Google Scholar 

  22. Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 111 ff

    Google Scholar 

  23. Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 101

    Google Scholar 

  24. Melngailis J (1993) Focused ion beam lithography. Nucl Instrum Methods 80/81:1271

    CrossRef  Google Scholar 

  25. Miller T, Knoblauch A, Wilbertz C, Kalbitzer S (1995) Field-ion imaging of a tungsten supertip. Appl Phys A Mater Sci Process 61:99

    CrossRef  Google Scholar 

  26. Prewett PD, Mair GLR (1991) Focused ion beams from liquid metal ion sources. Research Studies Press, Taunton

    Google Scholar 

  27. Bischoff L, Pilz W, Mazarov P, Wieck AD (2010) Comparison of bismuth emitting liquid metal ion sources. Appl Phys A Mater Sci Process 99:145–150

    CrossRef  Google Scholar 

  28. Mazarov P, Melnikov A, Wernhardt R, Wieck AD (2008) Long-life bismuth liquid metal ion source for focussed ion beam micromachining application. Appl Surf Sci 254:7401–7404

    CrossRef  Google Scholar 

  29. Mazarov P, Wieck AD, Bischoff L, Pilz W (2009) Alloy liquid metal ion source for carbon focused ion beams. J Vac Sci Technol B 27:L47

    CrossRef  Google Scholar 

  30. Pezzagna S, Wildanger D, Mazarov P, Wieck AD, Sarov Y, Rangelow I, Naydenov B, Jelezko F, Hell SW, Meijer J (2010) Nanoscale engineering and optical addressing of single spins in diamond. Small 6:2117–2121

    CrossRef  Google Scholar 

  31. Wieck AD, Sakai D, Kawasaki T (2011) International Patent Number WO. 122687 A1

    Google Scholar 

  32. Chou YS, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in olymers. Appl Phys Lett 67:3114

    CrossRef  Google Scholar 

  33. Xia Y, Whitesides GM (1998) Soft lithography. Ann Rev Mater Sci 28:153

    CrossRef  Google Scholar 

  34. Chou SY, Krauss PR, Zhang W, Guo L, Zhuang I (1997) Sub-10 nm lithography and applications. J Vac Sci Technol B15:2897

    CrossRef  Google Scholar 

  35. Ye M, Li J-X, Li J, Li W, Lu B-R, Huang G, Mei Y, Chen Y, Liu R (2012) Humido-responsive nanostructures prepared by nanoimprinting. Microelectron Eng 98:634

    CrossRef  Google Scholar 

  36. Moro M, Taniguchi J, Hiwasa S (2014) Fabrication of antireflection structure film by roll-to-roll ultraviolet nanoimprint lithography. J Vac Sci Technol B32:06FG09

    CrossRef  Google Scholar 

  37. Mills E, Cannarella J, Zhang Q, Bhadra S, Arnold CB, Chou SY (2014) Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds. J Vac Sci Technol B32:06FG10

    CrossRef  Google Scholar 

  38. Scheer H-C, Schulz H, Lyebyedyev D (2000) New directions in nanotechnology – imprint techniques. In: Pavesi L, Buzaneva E (Hrsg) Frontiers of nano-optoelectronic systems. Kluwer, Dordrecht, S 319

    CrossRef  Google Scholar 

  39. Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (2001) Nanoimprint techniques. In: Nalwa HS (Hrsg) Handbook of thin film materials, Bd 5. Academic, S 1

    Google Scholar 

  40. Schift H, Heyderman LJ (2003) Kap 3: Nanorheology; squeeze flow in hot embossing of thin films. In: Sotomayor Torres C-M (Hrsg) Nanostructure science and technology, Volume on alternative lithography. Kluwer, New York

    Google Scholar 

  41. Schift H (2007) Nanoimprint lithography. In: Bushan B (Hrsg) Springer handbook of nanotechnology. Springer, Berlin, S 239

    CrossRef  Google Scholar 

  42. Guo LJ (2004) Topical review: recent progress in nanoimprint and its applications. J Phys D Appl Phys 37:R123

    CrossRef  Google Scholar 

  43. Cross GLW (2006) Topical review: the production of nanostructures by mechanical forming. J Phys D Appl Phys 39:R262

    CrossRef  Google Scholar 

  44. Schift H (2008) Nanoimprint lithography: an old story in modern times? A review. J Vac Sci Technol B26:458

    CrossRef  Google Scholar 

  45. Schulz H, Wissen M, Bogdanski N, Scheer H-C Mattes K, Friedrich C (2005) Choice of the molecular weight of an imprint polymer for hot embossing lithography. Microelectron Eng 78–79:625

    CrossRef  Google Scholar 

  46. Atasoy H, Vogler M, Haatainen T, Schleunitz A, Jarzabek D, Schift H, Reuther F, Gruetzner G, Rymuza Z (2011) Novel thermoplastic polymers with improved release properties for thermal NIL. Microelectron Eng 88:1902

    CrossRef  Google Scholar 

  47. Schuster C, Reuther F, Kolander A, Gruetzner G (2009) mr-NIL 6000LT – Epoxy-based curing resist for combined thermal and UV nanoimprint lithography below 50 °C. Microelectron Eng 86:722

    CrossRef  Google Scholar 

  48. Wang S, Dhima K, Steinberg C, Papenheim M, Scheer H-C, Helfer A, Görrn P (2015) Morphology of organic semi-crystalline polymer after thermal nanoimprint. Appl Phys A Mater Sci Process 121:357

    CrossRef  Google Scholar 

  49. Dhima K (2014) Hybrid lithography. The combination of T-NIL and UV-L. Dissertation Universität Wuppertal, Der AndereVerlag, Uelvesbüll

    Google Scholar 

  50. Dhima K, Steinberg C, Mayer A, Wang S, Papenheim M, Scheer H-C (2014) Residual layer lithography. Microelectron Eng 123:84

    CrossRef  Google Scholar 

  51. Horstmann JT, Hilleringmann U, Goser KF (1998) Matching analysis of deposition defined 50-nm MOSFETs. IEEE Trans ED-45:299

    CrossRef  Google Scholar 

  52. Noma H, Kawata H, Yasuda M, Hirai Y, Sakamoto J (2013) Selective edge lithography for fabricating imprint molds with mixed scale patterns. J Vac Sci Technol B31:06FB03

    CrossRef  Google Scholar 

  53. Schift H, Spreu C, Saidani M, Bednarzik M, Gobrecht J (2009) Transparent hybrid polymer stamp copies with sub-50-nm resolution for thermal and UV-nanoimprint lithography. J Vac Sci Technol B27:2846

    CrossRef  Google Scholar 

  54. Papenheim M, Steinberg S, Dhima K, Wang S, Scheer H-C (2015) Flexible composite stamp for thermal nanoimprint lithography based on OrmoStamp. J Vac Sci Technol B33:06F601

    CrossRef  Google Scholar 

  55. Gourgon C, Perret C, Micouin G, Lazzarino F, Tortai JH, Joubert O, Grolier J-PE (2003) Influence of pattern density in nanoimprint lithography. J Vac Sci Technol B21:98

    CrossRef  Google Scholar 

  56. Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (1998) Problems of the nanoimprinting technique for nanometer scale pattern definition. J Vac Sci Technol B16:3917

    CrossRef  Google Scholar 

  57. Tormen M, Sovernigo E, Pozzato A, Pianigiani M, Tormen M (2015) Sub-100 μs nanoimprint lithography at wafer scale. Microelectron Eng 141:21

    CrossRef  Google Scholar 

  58. Nagato N, Hattori S, Hamaguchi T, Nakao M (2010) Rapid thermal imprinting of high-aspect-ratio nanostructures with dynamic heating of mold surface. J Vac Sci Technol B28:C6M122

    CrossRef  Google Scholar 

  59. Unno N, Mäkelä T, Taniguchi J (2014) Thermal roll-to-roll imprinted nanogratings on plastic film. J Vac Sci Technol B32:06FG03

    CrossRef  Google Scholar 

  60. Seo SM, Kim TI, Lee HH (2006) Simple fabrication of nanostructure by continuous rigiflex imprinting. Microelectron Eng 84:567

    CrossRef  Google Scholar 

  61. Scheer H-C, Schulz H (2001) A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectron Eng 56:311

    CrossRef  Google Scholar 

  62. Zimmer K, Otte L, Braun A, Rudschuck S, Friedrich H, Schulz H, Scheer H-C, Hoffmann T, Sotomayor Torres C-M, Mehnert R, Bigl F (1999) Fabrication of 3D micro- and nanostructures by replica molding and imprinting. Proc EUSPEN 1:534

    Google Scholar 

  63. Heidari B, Maximov I, Montelius L (2000) Nanoimprint at the 6 inch wafer scale. J Vac Sci Technol B18:3557

    CrossRef  Google Scholar 

  64. Chaix N, Gourgon C, Perret C, Landis S, Leveder T (2007) Nanoimprint lithography processes on 200 mm Si wafer for optical application: residual thickness etching anisotropy. J Vac Sci Technol B25:2346

    CrossRef  Google Scholar 

  65. Landis S, Reboud V, Enot T, Vizios C (2013) Three dimensional on 300 mm wafer scale nanoimprint lithography process. Microelectron Eng 110:198

    CrossRef  Google Scholar 

  66. Haisma J, Verheijen M, van der Heuvel K (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B14:4124

    CrossRef  Google Scholar 

  67. Farshchian B, Amirsageghi A, Hurst SM, Wu J, Lee J, Park S (2011) Soft UV-nanoimprint lithography on non-planar surfaces. Microelectron Eng 88:3787

    CrossRef  Google Scholar 

  68. Schift H, Saxer S, Park S, Padeste C, Pieles U, Gobrecht J (2005) Controlled co-evaporation of silanes for nanoimprint stamps. Nanotechnology 16:171

    CrossRef  Google Scholar 

  69. Steinberg C, Dhima K, Blensgens D, Mayer A, Wang S, Papenheim M, Scheer H-C, Zajadacz J, Zimmer K (2014) A scalable anti-sticking layer process via controlled evaporation. Microelectron Eng 123:4

    CrossRef  Google Scholar 

  70. Francone A, Iojoiu C, Poulain C, Lombard C, Pepin-Donat B, Boussey J, Zelsmann M (2010) Impact of the resist properties on the antisticking layer degradation in UV nanoimprint lithography. J Vac Sci Technol B28:C6M72

    CrossRef  Google Scholar 

  71. Yamashita D, Taniguchi J, Suzuki H (2012) Liftetime evaluation of release agent for ultraviolet nanoimprint lithography. Microelectron Eng 97:109

    CrossRef  Google Scholar 

  72. Schmitt H, Duempelmann P, Fader R, Rommel M, Bauer AJ, Frey L, Brehm M, Kraft A (2012) Life time evaluation of PDMS stamps for UV-enhanced substrate conformal imprint lithography. Microelectron Eng 98:275

    CrossRef  Google Scholar 

  73. Zelsmann M, Alleaume C, Truffier-Boutry D, Francone A, Beaurain A, Pelissier B, Boussey J (2010) Degradation and surfactant-aided regeneration of fluorinated anti-sticking mold treatment in UV nanoimprint lithography. Microelectron Eng 87:1029

    CrossRef  Google Scholar 

  74. Hiroshima H, Komuro M (2007) UV-nanoimprint with the assistance of gas condensation at atmospheric environmental pressure. J Vac Sci Technol B25:2333

    CrossRef  Google Scholar 

  75. Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan SV, Ekerdt J, Wilson CG (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc SPIE 3676:279

    Google Scholar 

  76. Glinsner T, Veres T, Kreindl G, Roy E, Morton K, Wiesner T, Thanner C, Treiblmayr D, Miller R, Lindner P (2010) Fully automated hot embossing process utilizing high resolution working stamps. Microelectron Eng 87:1037

    CrossRef  Google Scholar 

  77. Verschuuren MA (2010) Substrate conformal imprint lithography for nanophotonics. Promotion Universität Utrecht

    Google Scholar 

  78. Fader R, Rommel M, Bauer A, Rumler M, Frey L, van de Laar R, Ji R, Schömbs U (2013) Accuracy of wafer level alignment with substrate conformal imprint lithography. J Vac Sci Technol B31:06FB02

    CrossRef  Google Scholar 

  79. Kim HJ, Almanza-Workman M, Garcia RA, Kwon O, Jeffrey F, Braymen S, Hauschildt J, Junge K, Larson D, Stieler D, Chaiken A, Cobene B, Elder RE, Jackson WB, Mehrban J, Jeans A, Luo H, Mai P, Perlov C, Taussig C (2009) Roll-to-roll manufacturing of electronics on flexible substrates using self-aligned imprint lithography (SAIL). J Soc Inf Display 17:963

    CrossRef  Google Scholar 

  80. Ji R, Hornung M, Verschuuren MA, van de Laar R, van Eekelen J, Plachetka U, Moeller M, Moormann C (2010) UV-enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron Eng 87(S):963

    CrossRef  Google Scholar 

  81. Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13:1386

    CrossRef  Google Scholar 

  82. Suh KY, Park MC, Kim P (2009) Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv Funct Mater 19:2699

    CrossRef  Google Scholar 

  83. Steinberg C, Gubert M, Papenheim M, Wang S, Scheer H-C, Zajadacz J, Zimmer K (2015) Challenges with soft stamps for guiding of diblock copolymers. Appl Phys A Mater Sci Process 121:489

    CrossRef  Google Scholar 

  84. Suh KY, Lee HH (2002) Self-organized polymeric microstructures. Adv Mater 14:346

    CrossRef  Google Scholar 

  85. Persano L, Molle S, Girardo S, Neves AAR, Camposeo A, Stabile R, Cingolani R, Pisigniano D (2008) Soft nanopatterning on light-emitting inorganic-organic composites. Adv Funct Mater 18:2692

    CrossRef  Google Scholar 

  86. Suh D, Lee HH (2004) Sub-100 nm organic light-emitting diodes patterned with room temperature imprint lithography. J Vac Sci Technol B22(S):1123

    CrossRef  Google Scholar 

  87. Ye X, Ding Y, Duan Y, Liu H, Lu B (2010) Room-temperature capillary-imprint lithography for making micro−/nanostructures in large areas. J Vac Sci Technol B28:138

    CrossRef  Google Scholar 

  88. Kumar A, Biebuck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498

    CrossRef  Google Scholar 

  89. Xia Y, Zhao X-M, Whitesides GM (1996) Pattern transfer: self assembled monolayers as ultrathin resists. Microelectron Eng 32:255

    CrossRef  Google Scholar 

  90. Xia Y, Mrksich M, Kim E, Whitesides GM (1996) Microcontact printing of octadecylsiloxane on the surface of Silicon dioxide and its application in microfabrication. J Am Chem Soc 117:9576

    CrossRef  Google Scholar 

  91. Xia Y, Qin D, Whitesides GM (1996) Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer sized features. Adv Mater 8:1015

    CrossRef  Google Scholar 

  92. Schmid H, Michel B (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:3042

    CrossRef  Google Scholar 

  93. Heyderman LJ, Schift H, David C, Gobrecht J, Schweizer T (2000) Flow behaviour of thin polymer films used for hot embossing lithography. Microelectron Eng 54:229

    CrossRef  Google Scholar 

  94. Scheer H-C, Papenheim M, Dhima K, Wang S, Steinberg C (2014) Aspects of cavity filling with nanimprint. Microsyst Technol 21:1595

    CrossRef  Google Scholar 

  95. Scheer H-C, Mayer A, Dhima K, Wang S, Steinberg C (2013) Challenges with high aspect ratio nanoimprint. Microsyst Technol 20:1891

    CrossRef  Google Scholar 

  96. Yasuda M, Araki K, Taga A, Horiba A, Kawata H, Hirai Y (2011) Computational study of polymer filling process in nanoimprint lithography. Microelectron Eng 88:2188

    CrossRef  Google Scholar 

  97. Hua F, Gaur A, Sun Y, Word M, Jin N, Adesida I, Shim M, Shim A, Rogers JA (2006) Processing dependent behavior of soft imprint lithography on the 1-10 nm scale. IEEE Trans Nanotechnol 5:301

    CrossRef  Google Scholar 

  98. Mayer A, Dhima K, Wang S, Steinberg C, Papenheim M, Scheer H-C (2015) The underestimated impact of instabilities in nanoimprint. Appl Phys A Mater Sci Process 121:405

    CrossRef  Google Scholar 

  99. Montelius L, Heidari B, Graczyk M, Maximov I, Sarwe E-L, Ling TGI (2000) Nanoimprint and UV-lithography: mix&match process for fabrication of interdigitatednanobiosensors. Microelectron Eng 53:521

    CrossRef  Google Scholar 

  100. Dhima K, Steinberg C, Wang S, Papenheim M, Scheer H-C (2015) Nanoimprint combination techiques. Microelectron Eng 141:92

    CrossRef  Google Scholar 

  101. Schmid GM, Miller M, Brooks C, Khusnatdinov N, LaBrake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang X (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B27:573

    CrossRef  Google Scholar 

  102. Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524

    CrossRef  Google Scholar 

  103. Tan W, Kopelman R (2000) Nanoscopic optical sensors and probes. In: Nalwa HS (Hrsg) Handbook of nanostructured materials and nanotechnology, Bd 4. Academic, New York, S 621

    CrossRef  Google Scholar 

  104. Betzig E, Trautmann JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189

    CrossRef  Google Scholar 

  105. Trautman JK, Macklin JJ, Brus LE, Betzig E (1994) Near-field spectroscopy of single molecules at room temperature. Nature 369:40

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang R. Fahrner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Fahrner, W.R., Hilleringmann, U., Scheer, HC., Wieck, A.D. (2017). Nanostrukturierung. In: Fahrner, W. (eds) Nanotechnologie und Nanoprozesse. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48908-6_7

Download citation