Zusammenfassung
Allgemein wird die physikalische Abscheidung (physical vapor deposition, PVD) aus der Gasphase in vier Gruppen unterteilt, nämlich (i) Aufdampfung, (ii) Sputtern, (iii) Ionenplattieren und (iv) Laserabtrag. Die ersten drei Verfahren erfolgen bei kleineren Drücken. Ein grober Überblick ist in Abb. 4.1 zu sehen.
This is a preview of subscription content, access via your institution.
Buying options










































































Literatur
Choy KL (2000) Vapor processing of nanostructured materials. In: Nalwa HS (Hrsg) Handbook of nanostructured material and nanotechnology, Bd 1. Academic, New York
Graper EB (1995) Resistance evaporation. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol
Graper EB (1995) Electron beam evaporation. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol
Shah SI (1995) Sputtering: introduction and general discussion. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol
Graper EB (1995) Ion vapour deposition. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol
Kawasaki M, Gong J, Nantoh M, Hasegawa T, Kitazawa K, Kumagai M, Hirai K, Horiguchi K, Yoshimoto M, Koinuma H (1993) Preparation and nanoscale characterization of highly stable YBa2Cu3O7-δ thin films. Jpn J Appl Phys 32:1612
Tsang WT (1985) Molecular beam epitaxy for III–V compound semiconductors. In: Willardson RK, Beer AC (Hrsg) Semiconductors and semimetals, Bd 22, part A. Academic, New York, S 96
Joyce BA, Foxton CT (1977) Growth and doping of semiconductor films by molecular beam epitaxy. Solid state device (1976). ESSDERC 13–16.09.1976, Institute of Physics Conference No. 32
Hansen M (1958) Constitution of binary alloys. McGraw-Hill, New York
Wagemann HG (o. J.) Priv Mitt
Webber RF, Thorn RS, Large LN (1969) The measurement of electrical activity and hall mobility of boron and phosphorus ion-implanted layers in silicon. Int J Electron 26:163
Dearnaley G, Freeman JH, Nelson RS, Stephen J (1973) Ion implantation. North-Holland, Amsterdam
Gibbons JF, Johnson WS, Mylroie SW (1975) Projected range statistics. Dowden, Hutchinson, and Ross, Stroudsburg
Maxwell HR Jr (1985) Process data. In: Beadle WE, Tsai JCC, Plummer RD (Hrsg) Quick reference manual for silicon integrated circuit technology. Wiley-Interscience, New York
Rappich J (o. J.) Niedertemperatur-Passivierung. http://www.hmi.de/bereiche/SE/SE1/projekte/t_verfahren/zelltechnologie/niedertemp/index.html. Zugegriffen am 14.08.2002
Pliskin WA, Zanin SJ (1970) Film thickness and composition. In: Glang R, Maissel LI (Hrsg) Handbook of thin film technology. McGraw-Hill, New York
Dorenwendt K (1985) Interferometrie. In: Kohlrausch F (Hrsg) Praktische Physik, 23. Aufl. Teubner-Verlag, Stuttgart, S 670
Sugawara K, Nahazawa Y, Yoshimi T (1976) In situ thickness monitoring of thick polycrystalline silicon film and its application to silicon epitaxial growth. J Electrochem Soc 123(4):586
Archer RJ (1962) Determination of the properties of films on silicon by method of ellipsometry. J Opt Soc Am 52:970
Grabosch G, Fahrner WR (2000) Spectral ellipsometry and dark conductivity measurements on p- and n-type microcrystalline films. In: Micromat 2000, 17–19.04.2000, Berlin
Pliskin WA, Zanin SJ (1970) Film thickness and composition. In: Glang R, Maissel LI (Hrsg) Handbook of thin film technology. McGraw-Hill, New York, S 11–30
Fries T Pers Mitt
Weima JA, Job R, Fahrner WR, Kosaca G, Müller N, Fries T (2001) Surface analysis of ultra-precisely polished chemical vapor deposited diamond films using spectroscopic and microscopic techniques. J Appl Phys 89:2434
Schwuttke GH (1974) Damage profiles in silicon and their impact on device reliability. Technical report no. 5, ARPA contract DAHC15-72-C-0274
Schwuttke GH (1965) New x-ray diffraction microscopy technique for the study of imperfections in semiconductor crystals. J Appl Phys 36:2712
Chang SL, Thiel PA (1995) Low-energy electron diffraction. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol
Taylor NJ (1970) A LEED study of the epitaxial growth of copper on the (110) surface of tungsten photographs (compiled by I. H Khan). In: Maissel RI, Glang R (Hrsg) Handbook of thin film technology. McGraw-Hill, New York, S 10–36
Joyce BA (1995) Reflection high-energy electron diffraction as a diagnostic technique in thin film growth studies. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol
Cain OJ, Vook RW (1978) Epitaxial layers of Cu2S grown from liquid solution and investigated by RHEED. J Electrochem Soc 125:882
Schindler R (1996) Semiconductor Technology. Skripte Der Fern Universität, Hagen
Grasserbauer M, Dudek HJ, Ebel MF (1985) Angewandte Oberflächenanalyse. Springer, Berlin
Job R, Ulyashin AG, Fahrner WR, Ivanov AI, Palmetshofer L (2001) Oxygen and hydrogen accumulation at buried implantation-damage layers in hydrogen- and helium-implanted czochralski silicon. Appl Phys A72:325
Baek SK, Choi CJ, Seong TY, Hwang H, Kim HK, Moon DW (2000) Characterization of sub-30 nm p+/n junction formed by plasma ion implantation. J Electrochem Soc 147:3091
Lifshin E (1994) Electron microprobe analysis. In: Cahn RW, Haasen P, Kramer EJ (Hrsg) Material science and technology, Bd 2B. VCH, Weinheim
Physical Electronics Industries. Untitled (1972)
Pawlik D, Oppolzer H, Hilmer T (1985) Characterization of thermal oxides grown on TaSi2/polysilicon films. J Vac Sci Technol B3:492
Irvin JC (1962) Resistivity of bulk silicon and of diffused layers. BSTJ 41:387
van der Pauw LJ (1958) A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Rep 13:1
Fahrner WR, Klausmann E, Bräunig D (1987) Si/SiO2 Intrinsic states and interface charges. Scientific Report of the Hahn-Meitner-Institute
Fahrner WR, Bräunig D, Knoll M, Laschinski JR (1984) Ion implantation for deep (>100 μm) buried layers. In: Gupta DC (Hrsg) Semiconductor processing, ASTM STP 850. American Society for Testing and Materials
Schreiber T (2001) Materials, Bd 13. Unaxis Semiconductors, Balzers, Liechtenstein, S 11
Pliskin WA, Conrad EE (1964) Nondestructive determination of thickness and refractive index of transparent films. IBM J Res Dev 8:43
Pliskin WA, Resch RP (1965) Refractive index of SiO2 films grown on silicon. J Appl Phys 36:2011
Reizman F, van Gelder WE (1967) Optical thickness measurements of SiO2-Si3N4 films on Si. Solid State Electron 10:625
Runyan WR (1965) Silicon semiconductor technology. McGraw-Hill, New York
Borchert D, Wolffersdorf C, Fahrner WR (1995) A Simple compact measurement set-up for the optical characterization of solar cells. In: 13th European photovoltaic solar energy conference, Nice, 23–27.10
Blaustein P, Hahn S (1989) Realtime inspection of wafer surfaces. Solid State Technol 32(12):27
Jahns J (1998) Free-space optical digital computing and interconnection. In: Wolf E (Hrsg) Progres in optics. Elsevier, Amsterdam, S 419
Fey D, Erhard W, Gruber M, Jahns J, Bartelt H, Grimm G, Hoppe L, Sinzinger S (2000) Optical interconnects for neural and reconfigurable VLSI architectures. Proc IEEE 88:838
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Deutschland
About this chapter
Cite this chapter
Fahrner, W.R. (2017). Nanoschichten. In: Fahrner, W. (eds) Nanotechnologie und Nanoprozesse. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48908-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-662-48908-6_4
Published:
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-48907-9
Online ISBN: 978-3-662-48908-6
eBook Packages: Computer Science and Engineering (German Language)