Skip to main content

Nanoschichten

  • 3433 Accesses

Zusammenfassung

Allgemein wird die physikalische Abscheidung (physical vapor deposition, PVD) aus der Gasphase in vier Gruppen unterteilt, nämlich (i) Aufdampfung, (ii) Sputtern, (iii) Ionenplattieren und (iv) Laserabtrag. Die ersten drei Verfahren erfolgen bei kleineren Drücken. Ein grober Überblick ist in Abb. 4.1 zu sehen.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-48908-6_4
  • Chapter length: 77 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-48908-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   99.99
Price excludes VAT (USA)
Abb. 4.1
Abb. 4.2
Abb. 4.3
Abb. 4.4
Abb. 4.5
Abb. 4.6
Abb. 4.7
Abb. 4.8
Abb. 4.9
Abb. 4.10
Abb. 4.11
Abb. 4.12
Abb. 4.13
Abb. 4.14
Abb. 4.15
Abb. 4.16
Abb. 4.17
Abb. 4.18
Abb. 4.19
Abb. 4.20
Abb. 4.21
Abb. 4.22
Abb. 4.23
Abb. 4.24
Abb. 4.25
Abb. 4.26
Abb. 4.27
Abb. 4.28
Abb. 4.29
Abb. 4.30
Abb. 4.31
Abb. 4.32
Abb. 4.33
Abb. 4.34
Abb. 4.35
Abb. 4.36
Abb. 4.37
Abb. 4.38
Abb. 4.39
Abb. 4.40
Abb. 4.41
Abb. 4.42
Abb. 4.43
Abb. 4.44
Abb. 4.45
Abb. 4.46
Abb. 4.47
Abb. 4.48
Abb. 4.49
Abb. 4.50
Abb. 4.51
Abb. 4.52
Abb. 4.53
Abb. 4.54
Abb. 4.55
Abb. 4.56
Abb. 4.57
Abb. 4.58
Abb. 4.59
Abb. 4.60
Abb. 4.61
Abb. 4.62
Abb. 4.63
Abb. 4.64
Abb. 4.65
Abb. 4.66
Abb. 4.67
Abb. 4.68
Abb. 4.69
Abb. 4.70
Abb. 4.71
Abb. 4.72
Abb. 4.73
Abb. 4.74

Literatur

  1. Choy KL (2000) Vapor processing of nanostructured materials. In: Nalwa HS (Hrsg) Handbook of nanostructured material and nanotechnology, Bd 1. Academic, New York

    Google Scholar 

  2. Graper EB (1995) Resistance evaporation. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol

    Google Scholar 

  3. Graper EB (1995) Electron beam evaporation. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol

    Google Scholar 

  4. Shah SI (1995) Sputtering: introduction and general discussion. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol

    Google Scholar 

  5. Graper EB (1995) Ion vapour deposition. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol

    Google Scholar 

  6. Kawasaki M, Gong J, Nantoh M, Hasegawa T, Kitazawa K, Kumagai M, Hirai K, Horiguchi K, Yoshimoto M, Koinuma H (1993) Preparation and nanoscale characterization of highly stable YBa2Cu3O7-δ thin films. Jpn J Appl Phys 32:1612

    CrossRef  Google Scholar 

  7. Tsang WT (1985) Molecular beam epitaxy for III–V compound semiconductors. In: Willardson RK, Beer AC (Hrsg) Semiconductors and semimetals, Bd 22, part A. Academic, New York, S 96

    Google Scholar 

  8. Joyce BA, Foxton CT (1977) Growth and doping of semiconductor films by molecular beam epitaxy. Solid state device (1976). ESSDERC 13–16.09.1976, Institute of Physics Conference No. 32

    Google Scholar 

  9. Hansen M (1958) Constitution of binary alloys. McGraw-Hill, New York

    Google Scholar 

  10. Wagemann HG (o. J.) Priv Mitt

    Google Scholar 

  11. Webber RF, Thorn RS, Large LN (1969) The measurement of electrical activity and hall mobility of boron and phosphorus ion-implanted layers in silicon. Int J Electron 26:163

    CrossRef  Google Scholar 

  12. Dearnaley G, Freeman JH, Nelson RS, Stephen J (1973) Ion implantation. North-Holland, Amsterdam

    Google Scholar 

  13. Gibbons JF, Johnson WS, Mylroie SW (1975) Projected range statistics. Dowden, Hutchinson, and Ross, Stroudsburg

    Google Scholar 

  14. Maxwell HR Jr (1985) Process data. In: Beadle WE, Tsai JCC, Plummer RD (Hrsg) Quick reference manual for silicon integrated circuit technology. Wiley-Interscience, New York

    Google Scholar 

  15. Rappich J (o. J.) Niedertemperatur-Passivierung. http://www.hmi.de/bereiche/SE/SE1/projekte/t_verfahren/zelltechnologie/niedertemp/index.html. Zugegriffen am 14.08.2002

  16. Pliskin WA, Zanin SJ (1970) Film thickness and composition. In: Glang R, Maissel LI (Hrsg) Handbook of thin film technology. McGraw-Hill, New York

    Google Scholar 

  17. Dorenwendt K (1985) Interferometrie. In: Kohlrausch F (Hrsg) Praktische Physik, 23. Aufl. Teubner-Verlag, Stuttgart, S 670

    Google Scholar 

  18. Sugawara K, Nahazawa Y, Yoshimi T (1976) In situ thickness monitoring of thick polycrystalline silicon film and its application to silicon epitaxial growth. J Electrochem Soc 123(4):586

    CrossRef  Google Scholar 

  19. Archer RJ (1962) Determination of the properties of films on silicon by method of ellipsometry. J Opt Soc Am 52:970

    CrossRef  Google Scholar 

  20. Grabosch G, Fahrner WR (2000) Spectral ellipsometry and dark conductivity measurements on p- and n-type microcrystalline films. In: Micromat 2000, 17–19.04.2000, Berlin

    Google Scholar 

  21. Pliskin WA, Zanin SJ (1970) Film thickness and composition. In: Glang R, Maissel LI (Hrsg) Handbook of thin film technology. McGraw-Hill, New York, S 11–30

    Google Scholar 

  22. Fries T Pers Mitt

    Google Scholar 

  23. Weima JA, Job R, Fahrner WR, Kosaca G, Müller N, Fries T (2001) Surface analysis of ultra-precisely polished chemical vapor deposited diamond films using spectroscopic and microscopic techniques. J Appl Phys 89:2434

    CrossRef  Google Scholar 

  24. Schwuttke GH (1974) Damage profiles in silicon and their impact on device reliability. Technical report no. 5, ARPA contract DAHC15-72-C-0274

    Google Scholar 

  25. Schwuttke GH (1965) New x-ray diffraction microscopy technique for the study of imperfections in semiconductor crystals. J Appl Phys 36:2712

    CrossRef  Google Scholar 

  26. Chang SL, Thiel PA (1995) Low-energy electron diffraction. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol

    Google Scholar 

  27. Taylor NJ (1970) A LEED study of the epitaxial growth of copper on the (110) surface of tungsten photographs (compiled by I. H Khan). In: Maissel RI, Glang R (Hrsg) Handbook of thin film technology. McGraw-Hill, New York, S 10–36

    Google Scholar 

  28. Joyce BA (1995) Reflection high-energy electron diffraction as a diagnostic technique in thin film growth studies. In: Glocker AD, Shah SI (Hrsg) Handbook of thin film process technology. Institute of Physics, Bristol

    Google Scholar 

  29. Cain OJ, Vook RW (1978) Epitaxial layers of Cu2S grown from liquid solution and investigated by RHEED. J Electrochem Soc 125:882

    CrossRef  Google Scholar 

  30. Schindler R (1996) Semiconductor Technology. Skripte Der Fern Universität, Hagen

    Google Scholar 

  31. Grasserbauer M, Dudek HJ, Ebel MF (1985) Angewandte Oberflächenanalyse. Springer, Berlin

    Google Scholar 

  32. Job R, Ulyashin AG, Fahrner WR, Ivanov AI, Palmetshofer L (2001) Oxygen and hydrogen accumulation at buried implantation-damage layers in hydrogen- and helium-implanted czochralski silicon. Appl Phys A72:325

    CrossRef  Google Scholar 

  33. Baek SK, Choi CJ, Seong TY, Hwang H, Kim HK, Moon DW (2000) Characterization of sub-30 nm p+/n junction formed by plasma ion implantation. J Electrochem Soc 147:3091

    CrossRef  Google Scholar 

  34. Lifshin E (1994) Electron microprobe analysis. In: Cahn RW, Haasen P, Kramer EJ (Hrsg) Material science and technology, Bd 2B. VCH, Weinheim

    Google Scholar 

  35. Physical Electronics Industries. Untitled (1972)

    Google Scholar 

  36. Pawlik D, Oppolzer H, Hilmer T (1985) Characterization of thermal oxides grown on TaSi2/polysilicon films. J Vac Sci Technol B3:492

    CrossRef  Google Scholar 

  37. Irvin JC (1962) Resistivity of bulk silicon and of diffused layers. BSTJ 41:387

    Google Scholar 

  38. van der Pauw LJ (1958) A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Rep 13:1

    Google Scholar 

  39. Fahrner WR, Klausmann E, Bräunig D (1987) Si/SiO2 Intrinsic states and interface charges. Scientific Report of the Hahn-Meitner-Institute

    Google Scholar 

  40. Fahrner WR, Bräunig D, Knoll M, Laschinski JR (1984) Ion implantation for deep (>100 μm) buried layers. In: Gupta DC (Hrsg) Semiconductor processing, ASTM STP 850. American Society for Testing and Materials

    Google Scholar 

  41. Schreiber T (2001) Materials, Bd 13. Unaxis Semiconductors, Balzers, Liechtenstein, S 11

    Google Scholar 

  42. Pliskin WA, Conrad EE (1964) Nondestructive determination of thickness and refractive index of transparent films. IBM J Res Dev 8:43

    CrossRef  Google Scholar 

  43. Pliskin WA, Resch RP (1965) Refractive index of SiO2 films grown on silicon. J Appl Phys 36:2011

    CrossRef  Google Scholar 

  44. Reizman F, van Gelder WE (1967) Optical thickness measurements of SiO2-Si3N4 films on Si. Solid State Electron 10:625

    CrossRef  Google Scholar 

  45. Runyan WR (1965) Silicon semiconductor technology. McGraw-Hill, New York

    Google Scholar 

  46. Borchert D, Wolffersdorf C, Fahrner WR (1995) A Simple compact measurement set-up for the optical characterization of solar cells. In: 13th European photovoltaic solar energy conference, Nice, 23–27.10

    Google Scholar 

  47. Blaustein P, Hahn S (1989) Realtime inspection of wafer surfaces. Solid State Technol 32(12):27

    Google Scholar 

  48. Jahns J (1998) Free-space optical digital computing and interconnection. In: Wolf E (Hrsg) Progres in optics. Elsevier, Amsterdam, S 419

    Google Scholar 

  49. Fey D, Erhard W, Gruber M, Jahns J, Bartelt H, Grimm G, Hoppe L, Sinzinger S (2000) Optical interconnects for neural and reconfigurable VLSI architectures. Proc IEEE 88:838

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang R. Fahrner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Fahrner, W.R. (2017). Nanoschichten. In: Fahrner, W. (eds) Nanotechnologie und Nanoprozesse. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48908-6_4

Download citation