Skip to main content

Nanodefekte

  • Chapter
  • First Online:
Nanotechnologie und Nanoprozesse
  • 3757 Accesses

Zusammenfassung

Die wahrscheinlich am besten bekannte Sorte von Nanostrukturen sind die Nanodefekte. Sie sind seit langem bekannt und Gegenstand zahlreicher Untersuchungen. Einige von ihnen sind in Abb. 3.1 zu sehen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Hull R (Hrsg) (1999) Properties of crystalline silicon. Inspec, London

    Google Scholar 

  2. Pantelides ST (1986) Deep centers in semiconductors. Gordon and Breach, Newark

    Google Scholar 

  3. Dash WC (1957) Dislocations and mechanical properties of crystals (Hrsg: Fisher JC et al). Wiley, New York

    Google Scholar 

  4. Hwang KH, Park JW, Yoon E (1997) Amorphous {100} platelet formation in (100) Si induced by hydrogen plasma treatment. J Appl Phys 81:74

    Article  Google Scholar 

  5. Job R, Ulyashin A, Fahrner WR (2000) The evolution of hydrogen molecule formation in hydrogen plasma treated czochralski silicon. E-MRS Spring Meeting, Strasbourg

    Google Scholar 

  6. Job R, Ulyashin A, Fahrner WR, Markevich VP, Murin LI, Lindström JL, Raiko V, Engemann J (2000) Bulk and surface properties of Cz-silicon after hydrogen plasma treatments. In: Claes CL et al (Hrsg) High purity silicon VI. El.-Chem Soc Proc 2000–2017 (the 198th Meeting of the El.-Chem Soc, 22–27.10.2000, Phoenix), S鼮209

    Google Scholar 

  7. Kaufmann U, Schneider J (1976) Deep traps in semi-insulating GaAs: Cr revealed by photosensitive ESR. Solid State Comm 20:143

    Article  Google Scholar 

  8. Zerbst M (1966) Relaxationseffekte an Halbleiter-Isolator-Grenzflächen. Z Angew Phys 22:30

    Google Scholar 

  9. Klausmann E, Fahrner WR, Bräunig D (1989) The electronic states of the Si-SiO2 interface. In: Barbottin G, Vapaille A (Hrsg) Instabilities in silicon devices, Bd 2. North-Holland, Amsterdam

    Google Scholar 

  10. Ferretti R, Fahrner WR, Bräunig D (1979) High sensitivity non-destructive profiling of radiation induced damage in MOS structures. IEEE Trans Nucl Sci NS-26:4828

    Google Scholar 

  11. Schroder DK (1998) Semiconductor material and device characterization. Wiley, New York

    Google Scholar 

  12. Van Wieringen A, Warmoltz N (1956) On the permeation of hydrogen and helium in single crystal silicon and germanium at elevated temperatures. Physica 22:849

    Article  Google Scholar 

  13. Job R, Fahrner WR, Kazuchits NM, Ulyashin AG (1998) A two step low temperature process for a p-n junction formation due to hydrogen enhanced thermal donor formation in p-type czochralski silicon. In: Nickel NH et al (Hrsg) Hydrogen in semiconductors and metals. MRS Symp Proc Ser 513:337

    Google Scholar 

  14. Ulyashin AG, Petlitskii AN, Job R, Fahrner WR (1998) Hydrogen enhanced thermal donor formation in p-type czochralski silicon with denuded zone. In: Claeys CL et al (Hrsg) High purity silicon V. El.-Chem Soc Proc 98(13):425

    Google Scholar 

  15. Ulyashin AG, Ivanov AI, Job R, Fahrner WR, Frantskevich AV, Komarov FF, Kamyshan AC (2000) The hydrogen gettering at post-implantation plasma treatments of helium- and hydrogen implanted czochralski silicon. Mater Sci Eng B73:64

    Article  Google Scholar 

  16. Rebohle L, von Borany J, Yankov RA, Skorupa W (1977) Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers. Appl Phys Lett 71:2809

    Article  Google Scholar 

  17. Rebohle L, von Borany J, Fröb H, Skorupa W (2000) Blue photo- and electroluminescence of silicon dioxide layers implanted with group IV elements. Appl Phys B71:131

    Article  Google Scholar 

  18. Gebel T, Skorupa W, von Borany J, Borchert D, Fahrner WR (2000) Integrierter Optokoppler und Verfahren seiner Herstellung. Deutsches Patent 100 11 28.7. 08.03.2000

    Google Scholar 

  19. Thomas DF (2000) Porous silicon. In: Nalwa HS (Hrsg) Handbook of nanostructured materials and nanotechnology, Bd 4. Academic, New York

    Google Scholar 

  20. Bondarenko VP, Novikov AP, Shiryaev Yu C, Samoiluk TT, Timofeev AB (1987) A method for porous silicon production on silicon substrate. Sowjetunion Patent N 1403902 (auf Russisch)

    Google Scholar 

  21. Koshida N, Koyama H (1992) Visible electroluminescence from porous silicon. Appl Phys Lett 60:347

    Article  Google Scholar 

  22. Asmus T, Fink D, Sieber I, Hoffmann V, Müller M, Stolterfoht N, Berdinsky AS. Deposition of conducting polymers into ion tracks (nicht veröffentlicht)

    Google Scholar 

  23. Vobecky J, Hazdra P, Galster N, Carroll E (1998) Free-wheeling diodes with improved reverse recovery by combined electron and proton irradiation. In: Proceedings of 8th PECM, Prague, 08–10.09.1998

    Google Scholar 

  24. Schwuttke GH (1973) Damage profiles in silicon and their impact on device reliability. Technical report 3, ARPA contract DAHC 15-72-C-0274

    Google Scholar 

  25. Bergmann RB, Rinke TJ (2000) Perspective of crystalline Si thin film solar cells: a new era of thin monocrystalline Si films? Prog Photovolt Res Appl 8:451

    Article  Google Scholar 

  26. Denisenko A, Aleksov A, Pribil A, Gluche P, Ebert W, Kohn E (2000) Hypothesis on the conductivity mechanism in hydrogen terminated diamond films. Diamond Relat Mater 9:1138

    Article  Google Scholar 

  27. Ulyashin AG, Gelfand RB, Shopak NV, Zaitsev AM, Denisenko AV, Melnikov AA (1993) Passivation of boron acceptor in diamond by atomic hydrogen: molecular-orbital linear-combination-of-atomic-orbitals simulation and experimental Data. Diamond Relat Mater 2:1516

    Article  Google Scholar 

  28. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961

    Article  Google Scholar 

  29. Biswas A, Awasthi DK, Singh BK, Lotha S, Singh JP, Fink D, Yadav BK, Bhattacharya B, Bose SK (1999) Resonant electron tunneling in single quantum well heterostructure junction of electrodeposited metal semiconductor nanostructures using nuclear track filters. Nucl Instr Meth 151:84

    Article  Google Scholar 

  30. Yoshida M, Tamada K, Spohr R Pers Mitt

    Google Scholar 

  31. Granstöm M, Berggren M, Inganäs O (1995) Micrometer- and nanometer-sized polymeric light-emitting diodes. Science 267:1479

    Article  Google Scholar 

  32. Fink D, Schulz A, Müller M, Richter H, Danziger M Ion-track based microinductivities (nicht veröffentlicht)

    Google Scholar 

  33. Zorinants G, Fink D (1997) nicht veröffentlicht

    Google Scholar 

  34. Berdinsky S, Fink D (o. J.) nicht veröffentlicht

    Google Scholar 

  35. Könenkamp R (o. J.) nicht veröffentlicht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang R. Fahrner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Fahrner, W.R. (2017). Nanodefekte. In: Fahrner, W. (eds) Nanotechnologie und Nanoprozesse. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48908-6_3

Download citation

Publish with us

Policies and ethics