Skip to main content

Skolemization for Substructural Logics

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9450)

Abstract

The usual Skolemization procedure, which removes strong quantifiers by introducing new function symbols, is in general unsound for first-order substructural logics defined based on classes of complete residuated lattices. However, it is shown here (following similar ideas of Baaz and Iemhoff for first-order intermediate logics in [1]) that first-order substructural logics with a semantics satisfying certain witnessing conditions admit a “parallel” Skolemization procedure where a strong quantifier is removed by introducing a finite disjunction or conjunction (as appropriate) of formulas with multiple new function symbols. These logics typically lack equivalent prenex forms. Also, semantic consequence does not in general reduce to satisfiability. The Skolemization theorems presented here therefore take various forms, applying to the left or right of the consequence relation, and to all formulas or only prenex formulas.

Keywords

  • Function Symbol
  • Residuated Lattice
  • Intuitionistic Logic
  • Predicate Symbol
  • Sequent Calculus

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

P. Cintula–Supported by RVO 67985807 and Czech Science Foundation GBP202/12/G061.

D. Diaconescu–Supported by Sciex grant 13.192.

G. Metcalfe–Supported by Swiss National Science Foundation grant 200021_146748.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-48899-7_1
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-48899-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Baaz, M., Lemhoff, R.: Skolemization in intermediate logics with the finite model property. Submitted

    Google Scholar 

  2. Baaz, M., Iemhoff, R.: On Skolemization in constructive theories. J. Symbolic Logic 73(3), 969–998 (2008)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Buss, S. (ed.): Handbook of Proof Theory. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  4. Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural logics: Cut-elimination and completions. Ann. Pure. Appl. Logic 163(3), 266–290 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Cintula, P., Hájek, P., Noguera, C. (eds).: Handbook of Mathematical Fuzzy Logic (in 2 volumes), volume 37, 38 of Studies in Logic, Mathematical Logic and Foundations. College Publications, London (2011)

    Google Scholar 

  6. Cintula, P., Metcalfe, G.: Herbrand theorems for substructural logics. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 584–600. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  7. Cintula, P., Noguera, C.: A general framework for mathematical fuzzy logic. In: Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic. vol. 1, vol. 37 of Studies in Logic, Mathematical Logic and Foundations, pp. 103–207. College Publications, London (2011)

    Google Scholar 

  8. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8), 465–476 (1979)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier, Amsterdam (2007)

    Google Scholar 

  10. García-Cerdaña, À., Armengol, E., Esteva, F.: Fuzzy description logics and t-norm based fuzzy logics. Int. J. Approximate Reasoning 51(6), 632–655 (2010)

    CrossRef  MATH  Google Scholar 

  11. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer, Dordrecht (1998)

    CrossRef  MATH  Google Scholar 

  12. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets Syst. 154(1), 1–15 (2005)

    CrossRef  MATH  Google Scholar 

  13. Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. J. ACM 48(5), 909–970 (2001)

    CrossRef  MathSciNet  Google Scholar 

  14. Metcalfe, G., Olivetti, N., Gabbay, D.M.: Proof Theory for Fuzzy Logics. vol. 36 of Applied Logic Series. Springer, Heidelberg (2008)

    Google Scholar 

  15. Minc, G.E.: The Skolem method in intuitionistic calculi. Proc. Steklov Inst. Math. 121, 73–109 (1974)

    MATH  MathSciNet  Google Scholar 

  16. Ono, H.: Crawley completions of residuated lattices and algebraic completeness of substructural predicate logics. Stud. Logica 100(1–2), 339–359 (2012)

    CrossRef  MATH  Google Scholar 

  17. Restall, G.: An Introduction to Substructural Logics. Routledge, New York (2000)

    CrossRef  Google Scholar 

  18. Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets Syst. 124(3), 361–370 (2001)

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisa Diaconescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cintula, P., Diaconescu, D., Metcalfe, G. (2015). Skolemization for Substructural Logics. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48899-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48898-0

  • Online ISBN: 978-3-662-48899-7

  • eBook Packages: Computer ScienceComputer Science (R0)