The Symmetric Property of Boolean Functions

  • Chuan-Kun Wu
  • Dengguo Feng
Part of the Advances in Computer Science and Technology book series (ACST)


Symmetric property is a special property of Boolean functions, which has attracted much study on it. This chapter presents fast Walsh transforms of symmetric Boolean functions, correlation immunity of symmetric functions, construction of symmetric resilient Boolean functions, and some cryptographic properties of majority functions being a special class of symmetric Boolean functions. The study on the correlation immunity of majority functions shows that majority functions have good asymptotical behavior of correlation immunity, i.e., although they are not correlation immune, they have, however, asymptotical correlation immunity.


  1. 1.
    Braeken, A., Preneel, B.: On the algebraic immunity of symmetric Boolean functions. In: Proceedings of Indocrypt 2005. LNCS 3797, pp. 35–48. Springer, Berlin/Heidelberg (2005)Google Scholar
  2. 2.
    Canteaut, A., Videau, M.: Symmetric Boolean functions. IEEE Trans. Inf. Theory IT-51(8), 2791–2811 (2005)Google Scholar
  3. 3.
    Chor, B., Goldreich, O., Hastad, J., Friedman, J., Rudich, S., Smolensky, R.: The bit extraction problem or t-resilient functions. In: Proceedings of 26th IEEE Symposium on Foundations of Computer Science, Portland, pp. 396–407 (1985)Google Scholar
  4. 4.
    Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Advances in Cryptology – Proceedings of Eurocrypt’03. LNCS 2656, pp. 345–359. Springer, Berlin/New York (2003)Google Scholar
  5. 5.
    Dalai, D.K., Maitra, S., Sarkar, S.: Basic theory in construction of Boolean functions with maximum possible annihilator immunity. Des. Codes Cryptogr. 40(1), 41–58 (2006)Google Scholar
  6. 6.
    Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS 561, Springer, Berlin/New York (1991)Google Scholar
  7. 7.
    Friedman, J.: On the bit extraction problem. In: Proceedings 33rd IEEE Symposium on Foundations of Computer Science, Pittsburgh, pp. 314–319 (1992)Google Scholar
  8. 8.
    Gopalakrishnan, K., Hoffman, D.G., Stinson, D.R.: A note on a conjecture concerning symmetric resilient functions. Inf. Process. Lett. 47, 139–143 (1993)Google Scholar
  9. 9.
    Li, N., Qi, W.-F.: Symmetric Boolean functions depending on an odd number of variables with maximum algebraic immunity. IEEE Trans. Infor. Theory IT-52(5), 2271–2273 (2006)Google Scholar
  10. 10.
    Maitra, S., Sarkar, P.: Maximum nonlinearity of symmetric boolean functions on odd number of variables. IEEE Trans. Inf. Theory IT-48(9), 2626–2630 (2002)Google Scholar
  11. 11.
    Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Advances in Cryptology – Proceedings of Eurocrypt’89. LNCS 434, pp. 549–562. Springer, Berlin/Heidelberg (1990)Google Scholar
  12. 12.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Advances in Cryptology – Proceedings of Eurocrypt’04. LNCS 3027, pp. 474–491. Springer, Berlin/Heidelberg (2004)Google Scholar
  13. 13.
    Nyberg, K.: Linear approximation of block ciphers, In: Advances in Cryptology – Proceedings of Eurocrypt’94. LNCS 950, pp. 439–444. Springer, Berlin/Heidelberg (1995)Google Scholar
  14. 14.
    Qu, C., Seberry, J., Pieprzyk, J.P.: On the symmetric property of homogeneous Boolean functions. In: Proceedings of Australian Conference on Information Security and Privacy (ACISP’99). LNCS 1587, pp. 26–35. Springer, Berlin/Heidelberg (1999)Google Scholar
  15. 15.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 59–88 (1949)Google Scholar
  16. 16.
    Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inf. Theory IT-30(5), 776–780 (1984)Google Scholar
  17. 17.
    Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. Comput. C-34(1), 81–85 (1985)Google Scholar
  18. 18.
    Siegenthaler, T.: Cryptanalysts’ representation of nonlinearly filtered m-sequences. In: Advances in Cryptology – Proceedings of Eurocrypt’85. LNCS 219, pp. 103–110. Springer, Heidelberg (1986)Google Scholar
  19. 19.
    Siegenthaler, T.: Design of combiners to prevent divide and conquer attacks. In: Advances in Cryptology, Proceedings of Crypto’85. LNCS 218, pp. 237–279. Springer, Berlin/Heidelberg/New York (1986)Google Scholar
  20. 20.
    Stinson, D.R., Massey, J.L.: An infinite class of counterexamples to a conjecture concerning nonlinear resilient functions. J. Cryptol. 8, 167–173 (1995)Google Scholar
  21. 21.
    Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean functions. Math. Syst. Theory 10, 323–336 (1977)Google Scholar
  22. 22.
    Wu, C.K., Dawson, E.: Correlation immunity and resiliency of symmetric Boolean functions. Theor. Comput. Sci. 312, 321–335 (2004)Google Scholar
  23. 23.
    Xiao, G.Z., Massey, J.L.: A spectral characterization of Correlation-immune combining functions. IEEE Trans. Inf. Theory IT-34(3), 569–571 (1988)Google Scholar
  24. 24.
    Zhao, Y., Li, H.: On bent functions with some symmetric properties. Discret. Appl. Math. 154, 2537–2543 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chuan-Kun Wu
    • 1
  • Dengguo Feng
    • 2
  1. 1.Chinese Academy of SciencesState Key Lab of Information Security Institute of Information EngineeringBeijingChina
  2. 2.Chinese Academy of SciencesInstitute of SoftwareBeijingChina

Personalised recommendations