Advertisement

Correlation Immunity of Boolean Functions

  • Chuan-Kun Wu
  • Dengguo Feng
Chapter
  • 978 Downloads
Part of the Advances in Computer Science and Technology book series (ACST)

Abstract

The concept of correlation immunity was proposed by Siegenthaler in 1984. It is a security measure to the correlation attack of nonlinear combiners. This chapter first briefly describes the correlation attack of nonlinear combiners, which gives the rationale about why correlation immunity is a reasonable security measure, and then the correlation immunity of Boolean functions is studied. Different approaches to the constructions of Boolean functions are introduced, which yields a way in theory to exhaustively construct all the correlation immune Boolean functions, and such an example is given for the correlation immune Boolean functions in four variables. Correlation immune Boolean function with some other cryptographic properties are also studied in brief. In the end, the concept of correlation immunity is introduced to reflect the resistance against correlation attack when the Boolean function is not correlation immune in the traditional sense.

Keywords

Correlation Immune Functions Boolean Function Correlation Attacks Exhaustive Construction Nonlinear Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson, R.J.: Searching for the optimum correlation attacks. In: Proceedings of K.U.Leuven Workshop on Cryptographic Algorithms, Leuven, pp. 56–62 (1994)Google Scholar
  2. 2.
    Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Bibliographisches Institute, Z\(\ddot{u}\) rich (1986)Google Scholar
  3. 3.
    Bierbrauer, J., Gopalakrishnan, K., Stinson, D.R.: Bounds on resilient functions and orthogonal arrays. In: Advances in Cryptology, Proceedings of Crypto’94. LNCS 839, pp. 247–256. Springer, Berlin/Heidelberg (1994)Google Scholar
  4. 4.
    Brickell, E.: A few results in message authentication. Congr. Numer. 43, 141–154 (1984)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Camion, P., Canteaut, A.: Construction of t-resilient functions over a finite alphabet. In: Advances in Cryptology, Proceedings of Eurocrypt’96. LNCS 1070, pp. 283–293. Springer, Berlin/Heidelberg (1996)Google Scholar
  6. 6.
    Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On correlation-immune functions. In: Advances in Cryptology, Proceedings of Crypto’91. LNCS 576, pp. 86–100. Springer, Berlin/Heidelberg/New York (1992)Google Scholar
  7. 7.
    Carlet, C.: Partially-bent functions. Des. Codes Cryptogr. 3, 135–145 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Carlet, C.: Two new classes of Bent functions. In: Advances in Cryptology, Proceedings of Eurocrypt’93. LNCS 765, pp. 77–101. Springer, Berlin/Heidelberg (1994)Google Scholar
  9. 9.
    Carlet, C.: Generalized partial spreads. IEEE Trans. Inf. Theory IT-41(5), 1482–1487 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Carlet, C.: More correlation-immune and resilient functions over Galois fields and Galois rings. In: Advances in Cryptology, Proceedings of Eurocrypt’97. LNCS 1233, pp. 422–433. Springer, Berlin/Heidelberg (1997)Google Scholar
  11. 11.
    Carlet, C., Sarkar, P.: Spectral domain analysis of correlation immune and resilient boolean functions. Finite Fields Appl. 8(1), 120–130 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chee, S., Lee, S., Lee, D.: On the correlation immune functions and their nonlinearity. In: Advances in Cryptoloty, Proceedings of Asiacrypt’96. LNCS 1163, pp. 232–243. Springer, Berlin/Heidelberg (1996)Google Scholar
  13. 13.
    Denisov, O.V.: An asymptotic formula for the number of correlation immune of order k boolean functions. Discret. Math. Appl. 2, 407–426 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS 561. Springer, Berlin/Heidelberg (1991)Google Scholar
  15. 15.
    Golic, J.D.: On the security of shift register based keystream generators. In: Fast Software Encryption 1993. LNCS 809, pp. 90–100. Springer, Berlin/Heidelberg (1994)Google Scholar
  16. 16.
    Golic, J.D.: Correlation properties of a general binary combiner with memory. J. Cryptol. 9(2), 111–126 (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Golic, J.D., Menicocci, R.: Edit distance correlation attack on the alternating step generator. In: Advances in Cryptology, Proceedings of Crypto’97. LNCS 1294, pp. 499–512. Springer, Berlin (1997)Google Scholar
  18. 18.
    Gopalakrishnan, K., Stinson, D.R.: Three characterizations of non-binary correlation-immune and resilient functions. Des. Codes Cryptogr. 5(3), 241–251 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lai, X.: Additive and linear structures of cryptographic functions. In: Fast Software Encryption 1994. LNCS 1008, pp. 75–85. Springer, Berlin/Heidelberg (1995)Google Scholar
  20. 20.
    Lee, S., Chee, S., Park, S., Park, S.: Conditional correlation attack on nonlinear filter generators. In: Advances in Cryptology, Proceedings of Asiacrypt 1996. LNCS 1163, pp. 360–367. Springer, Berlin/Heidelberg (1996)Google Scholar
  21. 21.
    Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and Applications, vol. 20. Addison-Wesley, Reading (1983)Google Scholar
  22. 22.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland (1977)Google Scholar
  23. 23.
    Maitra, S.: On nonlinearity and autocorrelation properties of correlation immune boolean functions. J. Inf. Sci. Eng. 20, 305–323 (2004)MathSciNetGoogle Scholar
  24. 24.
    Maitra, S., Passalic, E.: Further constructions of resilient boolean functions with very high nonlinearity. IEEE Trans. Inf. Theory IT-48(7), 1825–1834 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Maitra, S., Sarkar, P.: Hamming weights of correlation immune boolean functions. Inf. Process. Lett. 71, 149–153 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory IT-15(1), 122–127 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Advances in Cryptology, Proceedings of Eurocrypt’88. LNCS 330, pp. 301–314. Springer, New York (1988)Google Scholar
  28. 28.
    Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J. Cryptol. 1, 159–176 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Advances in Cryptology, Proceedings of Eurocrypt’89. LNCS 434, pp. 549–562. Springer, Berlin/Heidelberg (1990)Google Scholar
  30. 30.
    Meier, W., Staffelbach, O.: Correlation properties of combiners with memory in stream ciphers. J. Cryptol. 5(1), 67–86 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Millan, W.: Low order approximation of cipher functions. In: Cryptography: Policy and Algorithms, pp. 144–155. Springer, Berlin/Heidelberg (1996)Google Scholar
  32. 32.
    Rueppel, R.A.: Correlation-immunity and the summation generator. In: Advances in Cryptology, Proceedings of Crypto’85. LNCS 218, pp. 260–272. Springer, Berlin/Heidelberg (1986)Google Scholar
  33. 33.
    Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin/Heidelberg (1986)CrossRefzbMATHGoogle Scholar
  34. 34.
    Schneider, M.: On the construction and upper bounds of balanced and correlation-immune functions. Sel. Areas Cryptogr. Kluwer Academic Publishers, 6544(3), 73–87 (1997)Google Scholar
  35. 35.
    Seberry, J., Zhang, X.M., Zheng, Y.: On construction and nonlinearity of correlation immune functions, (extended abstract). In: Advances in Cryptology, Proceedings of Eurocrypt’93. LNCS 765, pp. 181–199. Springer, Berlin/Heidelberg/New York (1994)Google Scholar
  36. 36.
    Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. Inf. Theory IT-30(5), 776–780 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. Comput. C-34(1), 81–85 (1985)CrossRefGoogle Scholar
  38. 38.
    Siegenthaler, T.: Cryptanalysts’ representation of nonlinearly filtered m-sequences. In: Advances in Cryptology, Proceedings of Eurocrypt’85. LNCS 219, pp. 103–110. Springer, Berlin (1986)Google Scholar
  39. 39.
    Stinson, D.R.: Resilient functions and large sets of orthogonal arrays. Congr. Numer. 92, 105–110 (1993)MathSciNetGoogle Scholar
  40. 40.
    van Lint, J.H.: Introduction to Coding Theory. Springer, Berlin/Heidelberg (1982)CrossRefzbMATHGoogle Scholar
  41. 41.
    Wu, C.K., Dawson, E.: On construction of resilient functions. In: Information Security and Privacy, Proceedings of First Australasian Conference. LNCS 1172, pp. 79–86. Springer, Berlin/Heidelberg (1996)Google Scholar
  42. 42.
    Wu, C.K., Wang, X.M., Dawson, E.: Construction of correlation immune functions based on the theory of error-correcting codes. In: Proceedings of ISITA96, Victoria, pp. 167–170 (1996)Google Scholar
  43. 43.
    Xian, Y.: Correlation immunity of boolean functions. Electron. Lett. 23, 1335–1336 (1987)CrossRefGoogle Scholar
  44. 44.
    Xiao, G.Z., Massey, J.L.: A spectral characterization of correlation-immune combining functions. IEEE Trans. Inf. Theory IT-34(3), 569–571 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Zhang, X.M., Zheng, Y.: On nonlinear resilient functions (extended abstract). In: Advances in Cryptology, Proceedings of Eurocrypt’95. LNCS 921, pp. 274–288. Springer, Berlin/Heidelberg (1995)Google Scholar
  46. 46.
    Zhang, X.M., Zheng, Y.: Auto-correlations and new bounds on the nonlinearity of boolean functions. In: Advances in Cryptology, Proceedings of Eurocrypt’96. LNCS 1070, pp. 294–306. Springer, Berlin/Heidelberg (1996)Google Scholar
  47. 47.
    Zhang, X.M., Zheng, Y.: Cryptographically resilient functions. IEEE Trans. Inf. Theory IT-43(5), 1740–1747 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Zhang, F., Hu, Y., Xie, M., Wei, Y.: Constructions of 1-resilient boolean functions on odd number of variables with a high nonlinearity. Secur. Commun. Netw. 5(6), 614–624 (2011)CrossRefGoogle Scholar
  49. 49.
    Zheng, Y., Zhang, X.M.: On relationships among avalanche, nonlinearity and corrlation immunity. In: Advances in Cryptology, Proceedings of Asiacrypt 2000. LNCS 1976, pp. 470–482. Springer, Berlin/Heidelberg (2000)Google Scholar
  50. 50.
    Zheng, Y., Zhang, X.M.: Improved upper bound on the nonlinearity of high order correlation immune functions. In: Selected Areas in Cryptography. LNCS 2012, pp. 262–274. Springer, Berlin/Heidelberg (2001)Google Scholar
  51. 51.
    Zheng, Y., Zhang, X.M.: New results on correlation immune functions. In: Proceedings of 3-rd International Conference on Information Security and Cryptology. LNCS 2015, pp. 49–63. Springer, Berlin/Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chuan-Kun Wu
    • 1
  • Dengguo Feng
    • 2
  1. 1.Chinese Academy of SciencesState Key Lab of Information Security Institute of Information EngineeringBeijingChina
  2. 2.Chinese Academy of SciencesInstitute of SoftwareBeijingChina

Personalised recommendations