International Conference on the Theory and Application of Cryptology and Information Security

Advances in Cryptology -- ASIACRYPT 2015 pp 758-782 | Cite as

Garbling Scheme for Formulas with Constant Size of Garbled Gates

  • Carmen Kempka
  • Ryo Kikuchi
  • Susumu Kiyoshima
  • Koutarou Suzuki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9452)

Abstract

We provide a garbling scheme which creates garbled circuits of a very small constant size (four bits per gate) for circuits with fan-out one (formulas). For arbitrary fan-out, we additionally need only two ciphertexts per additional connection of each gate output wire. We make use of a trapdoor permutation for which we define a generalized notion of correlation robustness. We show that our notion is implied by PRIV-security, a notion for deterministic (searchable) encryption. We prove our scheme secure in the programmable random oracle model.

Keywords

Garbled circuits Constant size of garbled gates Correlation robustness PRIV-security 

References

  1. 1.
    Shelat, A., Shen, C.: Two-output secure computation with malicious adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Applebaum, B.: Garbling XOR gates “for free” in the standard model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\({^0}\). FOCS 2004, 166–175 (2004)MATHGoogle Scholar
  4. 4.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with constant online rate or how to compress garbled circuits keys. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Fischlin, M. O’Neill, A., Ristenpart, T.: Deterministic encryption: definitional equivalences and constructions without random oracles. Cryptology ePrint Archive, Report 2008/267 (2008). http://eprint.iacr.org/
  8. 8.
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. Cryptology ePrint Archive, Report 2012/265 (2012). http://eprint.iacr.org/
  9. 9.
    Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  10. 10.
    Brandão, L.T.A.N.: Secure two-party computation with reusable bit-commitments, via a cut-and-choose with forge-and-lose technique. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 441–463. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  12. 12.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  13. 13.
    Hemenway, B., Lu, S., Ostrovsky, R.: Correlated product security from any one-way function. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 558–575. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 458–475. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)Google Scholar
  17. 17.
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 244. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  18. 18.
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)Google Scholar
  19. 19.
    Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  20. 20.
    Kolesnikov, V., Kumaresan, R.: Improved secure two-party computation via information-theoretic garbled circuits. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 205–221. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  22. 22.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  23. 23.
    Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 1–17. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  25. 25.
    Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  27. 27.
    Lindell, Y., Riva, B.: Cut-and-choose Yao-based secure computation in the online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  28. 28.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: USENIX Security Symposium, pp. 287–302 (2004)Google Scholar
  29. 29.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: EC, pp. 129–139 (1999)Google Scholar
  30. 30.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  31. 31.
    Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  32. 32.
    Sander, T., Young, A.L., Yung, M.: Non-interactive cryptocomputing for NC\({^1}\). In: FOCS, pp. 554–567 (1999)Google Scholar
  33. 33.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar
  34. 34.
    Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015) Google Scholar

Copyright information

© International Association for Cryptologc Research 2015

Authors and Affiliations

  • Carmen Kempka
    • 1
  • Ryo Kikuchi
    • 1
  • Susumu Kiyoshima
    • 1
  • Koutarou Suzuki
    • 1
  1. 1.NTT Secure Platform LaboratoriesTokyoJapan

Personalised recommendations