Skip to main content

Virtuelle Realität in der Medizin

  • Chapter
  • First Online:

Zusammenfassung

Die Virtuelle Realität erlebt heutzutage eine noch nie dagewesene Popularität. Was in den 1980er- und 1990er-Jahren Forschungsinstitutionen und Universitäten vorbehalten war, ist mittlerweile im Massenmarkt angekommen. Bereits vor vielen Jahren hat die Virtuelle Realität Einzug in der Medizin erhalten. Rasante Entwicklungen in der Gerätetechnologie sowie bei den Prozessorarchitekturen haben zu einer zunehmend technologiebasierten Medizin geführt. Speziell auf dem Gebiet der Chirurgie wurden neue Möglichkeiten und ein Mehrwert gesehen. In diesem Kapitel wird ein kleiner Überblick gegeben werden, auf welche Weise Virtuelle Realität speziell in der medizinischen Ausbildung und Simulation zum Einsatz kommt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Alotaibi FE et al (2015) Utilizing NeuroTouch, a virtual reality simulator, to assess and monitor bimanual performance during brain tumor resection. Can J Neurol Sci/J Can Sci Neurol 42(Suppl 1):S20–S20

    Article  Google Scholar 

  • Attardi SM, Rogers KA (2015) Design and implementation of an online systemic human anatomy course with laboratory. Anat Sci Educ 8:53–62

    Article  PubMed  Google Scholar 

  • Basdogan C (2012) Dynamic material properties of human and animal livers In: Yohan P (Hrsg) Soft tissue biomechanical modeling for computer assisted surgery, tissue engineering, and biomaterials. Springer series on studies in mechanobiology. S 229–241

    Google Scholar 

  • Brinkman WM et al (2013) Assessment of basic laparoscopic skills on virtual reality simulator or box trainer. Surg Endosc 27(10):3584–3590

    Article  PubMed  Google Scholar 

  • Bürger T et al (2006) Evaluation of target scores and benchmarks for the traversal task scenario of the minimally invasive surgical trainer-virtual reality (MIST-VR) laparoscopy simulator. Surg Endosc 20(4):645–650

    Article  PubMed  Google Scholar 

  • Cotin S et al (1996) Geometric and physical representations for a simulator of hepatic surgery. Stud Health Technol Inform 29:139–151

    CAS  PubMed  Google Scholar 

  • Courtecuisse H et al (2010) GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103(2–3):159–168

    Article  PubMed  Google Scholar 

  • Coveney PV et al (2011) The virtual physiological human. Interface Focus 6:281–285

    Article  Google Scholar 

  • Davis CR, Rosenfield LK (2015) Looking at plastic surgery through Google Glass: part 1. Systematic review of Google Glass evidence and the first plastic surgical procedures. Plast Reconstr Surg 135(3):918–928

    Article  CAS  PubMed  Google Scholar 

  • Delorme S et al (2012) NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71(1 Suppl Operative): 32–42

    Google Scholar 

  • Drasdo D et al (2014) The virtual liver: state of the art and future perspectives. Arch Toxicol 88(12):2071–2075

    Article  CAS  PubMed  Google Scholar 

  • Dreval' ON et al (2014) Results of using Spine Assist Mazor in surgical treatment of spine disorders. Zh Vopr Neirokhir Im N N Burdenko 78(3):14–20

    PubMed  Google Scholar 

  • Erdt M et al (2012) Deformable registration of MR images using a hierarchical patch based approach with a normalized metric quality measure. Biomedical Imaging (ISBI), 2012. In: 9th IEEE international symposium, S 1347, 1350

    Google Scholar 

  • Erdt M et al (2015) Augmented reality as a tool to deliver e-learning based blended content in and out of the class-room. EG 2015 – Education papers. The Eurographics Association

    Google Scholar 

  • Hammond FL III et al (2014) Soft tactile sensor arrays for force feedback in micromanipulation. IEEE Sensors 14(5):1443–1452

    Article  Google Scholar 

  • Höhne KH et al (2009) VOXEL-MAN 3D Navigator: brain and skull. Regional, functional and radiological anatomy, version 2.0. Springer-Verlag Electronic Media, Heidelberg

    Google Scholar 

  • Kohn LT et al (2000) To err is human: building a safer health system. Committee on Quality of Health Care in America, Institute of Medicine. The National Academies Press, Washington, DC

    Google Scholar 

  • Kühnapfel U et al (1995) Endosurgery simulations with KISMET. Virtual Reality World ‚95‘ Stuttgart

    Google Scholar 

  • Kumar D et al (2012) Augmented reality for anatomical education. In: 10th Asia Pacific Medical Education Conference (APMEC)

    Google Scholar 

  • Levy M (2012) Physicians in 2012: the outlook for on demand, mobile, and social digital media. Manhattan Research, New York

    Google Scholar 

  • Makovsky/Kelton (2015) Fifth Annual Makovsky/Kelton Pulse of Online Health Survey, Jan 2015

    Google Scholar 

  • Manhattan Research (2012, 2015) Taking the Pulse U.S.

    Google Scholar 

  • Maschuw K et al (2008) The impact of self-belief on laparoscopic performance of novices and experienced surgeons. World J Surg 32(9):1911–1916

    Article  CAS  PubMed  Google Scholar 

  • Meglan AM et al (1996) The teleos virtual environment toolkit for simulation-based surgical education. Studies in health technology and informatics, Bd. 29. IOS Press, Amsterdam, S 346–351

    Google Scholar 

  • Milgram P, Kishino AF (1994) Taxonomy of mixed reality visual displays. IEICE Trans Inf Syst E77-D(12):1321–1329

    Google Scholar 

  • Müller W et al (1995) Virtual reality in surgical arthroscopic training. J Image Guid Surg l(5):288–294

    Article  Google Scholar 

  • Müller M et al (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg

    Google Scholar 

  • Nguyen N et al (2014) Realism, criterion validity, and training capability of simulated diagnostic cerebral angiography. Stud Health Technol Inform 196:297–130

    PubMed  Google Scholar 

  • Rasool S et al (2014) Virtual knee arthroscopy using haptic devices and real surgical images. In: 16th international conference on human-computer interaction (HCI 2014), LNCS 8529 – digital human modeling and applications in Health, Safety, Ergonomics and Risk Management. Springer, S 436–447

    Google Scholar 

  • Report Buyer (2015) Global medical robotics market outlook 2018

    Google Scholar 

  • Salkini MW et al (2010) The role of haptic feedback in laparoscopic training using the LapMentor II. J Endourol 24(1):99–102

    Article  PubMed  Google Scholar 

  • Satava RM (1993) Virtual reality surgical simulator. The first steps. Surg Endosc 7(3):203–205

    Article  CAS  PubMed  Google Scholar 

  • Satava RM (1995) Virtual reality, telesurgery, and the new world order of medicine. J Image Guid Surg 1:12–16

    Article  CAS  PubMed  Google Scholar 

  • Satava RM (2009) The revolution in medical education – the role of simulation. J Grad Med Educ 1:172–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Sitti M et al (2015) Biomedical applications of untethered mobile Milli/Microrobots. Proc IEEE 103(2):205–224

    Article  CAS  Google Scholar 

  • Spitzer V et al (1996) The visible human male: a technical report. J Am Med Inform Assoc 3(2):118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steger S et al (2012) Articulated atlas for segmentation of the skeleton from head & neck CT datasets. In: IEEE Engineering in Medicine and Biology Society (EMBS): 2012 I.E. international symposium on biomedical Imaging: from nano to macro. IEEE Press, S 1256–1259

    Google Scholar 

  • Stolka, PJ et al (2010) A 3D-elastography-guided system for laparoscopic partial nephrectomies. In: Medical Imaging 2010: Visualization, Image-Guided Procedures, and Modeling, Proceedings of SPIE, Bd 7625(1)

    Google Scholar 

  • Wallace D et al (2014) The learning curve of a novel handheld robotic system for unicondylar knee arthroplasty. In: International Society of Computer Assisted Orthopaedic Surgery 2014, Milan, 18–21 June

    Google Scholar 

  • Wesarg S et al (2004) Accuracy of needle implantation in brachytherapy using a medical AR system: a phantom study. In: Proceedings of Medical Imaging 2004, SPIE medical imaging symposium 2004. San Diego, S 341–352

    Google Scholar 

  • Willaert WI et al (2012) Simulated procedure rehearsal is more effective than a preoperative generic warm-up for endovascular procedures. Ann Surg 255:1184–1189

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Müller-Wittig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Müller-Wittig, W. (2017). Virtuelle Realität in der Medizin. In: Kramme, R. (eds) Informationsmanagement und Kommunikation in der Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48778-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48778-5_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48777-8

  • Online ISBN: 978-3-662-48778-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics