Alternative Materials to TiO2

  • Ren SuEmail author
  • Flemming Besenbacher
  • Graham Hutchings
Part of the Green Chemistry and Sustainable Technology book series (GCST)


One of the most significant investigations on heterogeneous photocatalytic process can be dated back to the 1970s, when Fujishima and Honda showed that the TiO2 electrode is capable of water splitting under suitable electromagnetic irradiation. Since then, TiO2-based materials have become the dominant photocatalyst and have been investigated for decades due to their abundance, non-toxicity, and relatively high reactivity. However, the bandgap of pristine TiO2 is larger than 3 eV, which can only absorb light that has a wavelength of less than 400 nm. Unfortunately, this portion of photons only corresponds to 4–5 % of the solar spectrum, which has limited the application of photocatalysis at an industrial scale. Moreover, the conduction band position of TiO2 is only slightly negative relative to that of the proton reduction potential, resulting in a relatively poor reduction power for solar-to-fuel conversion. Therefore, the development of alternative photocatalysts with visible light absorption and tunable properties is essential in the application of photocatalysis techniques.

In this chapter, we will consider the most popular photocatalyst systems other than TiO2. Their synthesis methods, characteristics, optimisations, and design will be presented. Last but not least, the design and synthesis of promoters, which play a very essential role in photocatalyst systems, will also be demonstrated at the end of this chapter.


Photocatalyst materials Metal oxides Perovskites Sulphides Nitrides Zeolites MOFs Anchored systems Promoters Cocatalysts 


  1. 1.
    Web of Knowledge (2015)
  2. 2.
    Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  3. 3.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  4. 4.
    Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Tang Z-R, Fu X, Xu Y-J (2011) Engineering the unique 2D Mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5:7426–7435CrossRefGoogle Scholar
  6. 6.
    Liu J, Liu Y, Liu N et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974CrossRefGoogle Scholar
  7. 7.
    Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int J Hydrog Energy 27:991–1022CrossRefGoogle Scholar
  8. 8.
    Ameen S, Akhtar MS, Seo H-K, Shin HS (2014) Metal oxide semiconductors and their nanocomposites application towards photovoltaic and photocatalytic. In: Tiwari A, Valyukh S (eds) Advanced energy materials. Wiley, Hoboken. doi: 10.1002/9781118904923.ch3
  9. 9.
    Wolf MJ, McKenna KP, Shluger AL (2012) Hole trapping at surfaces of m-ZrO2 and m-HfO2 nanocrystals. J Phys Chem C 116:25888–25897CrossRefGoogle Scholar
  10. 10.
    Takenaka S, Tanaka T, Funabiki T, Yoshida S (1998) Effect of alkali-metal ion addition to silica-supported molybdenum oxide on photocatalysis photooxidation of propane and propene, and photo-assisted metathesis of propene. J Chem Soc Faraday Trans 94:695–700CrossRefGoogle Scholar
  11. 11.
    Subbotina IR, Shelimov BN, Kazansky VB, Lisachenko AA, Che M, Coluccia S (1999) Selective photocatalytic reduction of nitric oxide by carbon monoxide over silica-supported molybdenum oxide catalysts. J Catal 184:390–395CrossRefGoogle Scholar
  12. 12.
    Wang Y, Zhang Z, Zhu Y et al (2008) Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano 2:1492–1496CrossRefGoogle Scholar
  13. 13.
    Liu N, Schneider C, Freitag D et al (2014) Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett 14:3309–3313CrossRefGoogle Scholar
  14. 14.
    Yang Y, Sun C, Wang L et al (2014) Constructing a metallic/semiconducting TaB2/Ta2O5 core/shell heterostructure for photocatalytic hydrogen evolution. Adv Energy Mater 4:14057–14064Google Scholar
  15. 15.
    Zhou C, Zhao Y, Shang L et al (2014) Facile preparation of black Nb4+ self-doped K4Nb6O17 microspheres with high solar absorption and enhanced photocatalytic activity. Chem Commun 50:9554–9556CrossRefGoogle Scholar
  16. 16.
    Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRefGoogle Scholar
  17. 17.
    Hou Y, Wang X, Wu L, Ding Z, Fu X (2006) Efficient decomposition of benzene over a β-Ga2O3 photocatalyst under ambient conditions. Environ Sci Technol 40:5799–5803CrossRefGoogle Scholar
  18. 18.
    He H, Orlando R, Blanco MA et al (2006) First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B 74:195123CrossRefGoogle Scholar
  19. 19.
    Wang X, Xu Q, Li M et al (2012) Photocatalytic overall water splitting promoted by an α–β phase junction on Ga2O3. Angew Chem Int Ed 51:13089–13092CrossRefGoogle Scholar
  20. 20.
    Zhao K, Zhang L, Wang J, Li Q, He W, Yin JJ (2013) Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J Am Chem Soc 135:15750–15753CrossRefGoogle Scholar
  21. 21.
    Ye J, Zou Z, Arakawa H et al (2002) Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M = V5+, Nb5+, Ta5+). J Photochem Photobiol A 148:79–83CrossRefGoogle Scholar
  22. 22.
    Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ Sci Nano 1:90–112CrossRefGoogle Scholar
  23. 23.
    Lee C-Y, Wang L, Kado Y, Killian MS, Schmuki P (2014) Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity. ChemSusChem 7:934–940CrossRefGoogle Scholar
  24. 24.
    An X, Li K, Tang J (2014) Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem 7:1086–1093CrossRefGoogle Scholar
  25. 25.
    Sastre F, Puga AV, Liu L, Corma A, García H (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801CrossRefGoogle Scholar
  26. 26.
    Sastre F, Corma A, García H (2013) Visible-light photocatalytic conversion of carbon monoxide to methane by nickel(II) oxide. Angew Chem Int Ed 52:12983–12987CrossRefGoogle Scholar
  27. 27.
    Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (a = Li, Na, and K). J Phys Chem B 105:4285–4292CrossRefGoogle Scholar
  28. 28.
    Kanhere P, Shenai P, Chakraborty S, Ahuja R, Zheng J, Chen Z (2014) Mono- and Co-doped NaTaO3 for visible light photocatalysis. Phys Chem Chem Phys 16:16085–16094CrossRefGoogle Scholar
  29. 29.
    Bao N, Shen L, Takata T, Domen K (2007) Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater 20:110–117CrossRefGoogle Scholar
  30. 30.
    Shen S, Zhao L, Guo L (2010) ZnmIn2S3+m (m = 1–5, integer): a new series of visible-light-driven photocatalysts for splitting water to hydrogen. Int J Hydrog Energy 35:10148–10154CrossRefGoogle Scholar
  31. 31.
    Liu G, Zhao L, Ma L, Guo L (2008) Photocatalytic H2 evolution under visible light irradiation on a novel CdxCuyZn1−x−yS catalyst. Catal Commun 9:126–130CrossRefGoogle Scholar
  32. 32.
    Yan H, Yang J, Ma G et al (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J Catal 266:165–168CrossRefGoogle Scholar
  33. 33.
    Daskalaki VM, Antoniadou M, Puma GL, Kondarides DI, Lianos P (2010) Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ Sci Technol 44:7200–7205CrossRefGoogle Scholar
  34. 34.
    Burton LA, Colombara D, Abellon RD et al (2013) Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem Mater 25:4908–4916CrossRefGoogle Scholar
  35. 35.
    Zhang YC, Li J, Zhang M, Dionysiou DD (2011) Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ Sci Technol 45:9324–9331CrossRefGoogle Scholar
  36. 36.
    Sun Y, Cheng H, Gao S et al (2012) Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew Chem Int Ed 51:8727–8731CrossRefGoogle Scholar
  37. 37.
    Zhuang HL, Hennig RG (2013) Single-layer group-III monochalcogenide photocatalysts for water splitting. Chem Mater 25:3232–3238CrossRefGoogle Scholar
  38. 38.
    Hu P, Wang L, Yoon M et al (2013) Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett 13:1649–1654CrossRefGoogle Scholar
  39. 39.
    Sato J, Saito N, Yamada Y et al (2005) RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting. J Am Chem Soc 127:4150–4151CrossRefGoogle Scholar
  40. 40.
    McDermott EJ, Kurmaev EZ, Boyko TD et al (2012) Structural and band Gap investigation of GaN:ZnO heterojunction solid solution photocatalyst probed by soft X-ray spectroscopy. J Phys Chem C 116:7694–7700CrossRefGoogle Scholar
  41. 41.
    Maeda K, Takata T, Hara M et al (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286–8287CrossRefGoogle Scholar
  42. 42.
    Yamasita D, Takata T, Hara M, Kondo JN, Domen K (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics 172:591–595CrossRefGoogle Scholar
  43. 43.
    Chun W-J, Ishikawa A, Fujisawa H et al (2003) Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J Phys Chem B 107:1798–1803CrossRefGoogle Scholar
  44. 44.
    Li S, Zhang L, Wang H et al (2014) Ta3N5-Pt nonwoven cloth with hierarchical nanopores as efficient and easily recyclable macroscale photocatalysts. Sci Rep 4:3978Google Scholar
  45. 45.
    Cao J, Ren L, Li N, Hu C, Cao M (2013) Mesoporous Ta3N5 microspheres prepared from a high-surface-area, microporous, amorphous precursor and their visible-light-driven photocatalytic activity. Chem Eur J 19:12619–12623CrossRefGoogle Scholar
  46. 46.
    Wang L, Dionigi F, Nguyen NT et al (2015) Tantalum nitride nanorod arrays: introducing Ni–Fe layered double hydroxides as a cocatalyst strongly stabilizing photoanodes in water splitting. Chem Mater 27:2360–2366CrossRefGoogle Scholar
  47. 47.
    Wang X, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefGoogle Scholar
  48. 48.
    Chen X, Zhang J, Fu X, Antonietti M, Wang X (2009) Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J Am Chem Soc 131:11658–11659CrossRefGoogle Scholar
  49. 49.
    Martin DJ, Qiu K, Shevlin SA et al (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chem Int Ed 53:9240–9245CrossRefGoogle Scholar
  50. 50.
    Anpo M, Shioya Y, Yamashita H et al (1994) Preparation and characterization of the Cu+/ZSM-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations. J Phys Chem 98:5744–5750CrossRefGoogle Scholar
  51. 51.
    Del Pilar-Albaladejo J, Dutta PK (2014) Topotactic transformation of zeolite supported cobalt(II) hydroxide to oxide and comparison of photocatalytic oxygen evolution. ACS Catal 4:9–15CrossRefGoogle Scholar
  52. 52.
    Ren Z, Kim E, Pattinson SW et al (2012) Hybridizing photoactive zeolites with graphene: a powerful strategy towards superior photocatalytic properties. Chem Sci 3:209–216CrossRefGoogle Scholar
  53. 53.
    Li Q, Jin Z, Peng Z, Li Y, Li S, Lu G (2007) High-efficient photocatalytic hydrogen evolution on eosin Y-sensitized Ti − MCM41 zeolite under visible-light irradiation. J Phys Chem C 111:8237–8241CrossRefGoogle Scholar
  54. 54.
    Corma A, Garcia H (2004) Zeolite-based photocatalysts. Chem Commun 13:1443–1459CrossRefGoogle Scholar
  55. 55.
    Wang J-L, Wang C, Lin W (2012) Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal 2:2630–2640CrossRefGoogle Scholar
  56. 56.
    Alvaro M, Carbonell E, Ferrer B, Llabrés i Xamena FX, Garcia H (2007) Semiconductor behavior of a metal-organic f(MOF). Chem Eur J 13:5106–5112CrossRefGoogle Scholar
  57. 57.
    Nasalevich MA, Goesten MG, Savenije TJ, Kapteijn F, Gascon J (2013) Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis. Chem Commun 49:10575–10577CrossRefGoogle Scholar
  58. 58.
    Wu P, He C, Wang J et al (2012) Photoactive chiral metal–organic frameworks for light-driven asymmetric α-alkylation of aldehydes. J Am Chem Soc 134:14991–14999CrossRefGoogle Scholar
  59. 59.
    Sun D, Fu Y, Liu W et al (2013) Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chem Eur J 19:14279–14285CrossRefGoogle Scholar
  60. 60.
    Yuan Y-J, Yu Z-T, Liu X-J, Cai J-G, Guan Z-J, Zou Z-G (2014) Hydrogen photogeneration promoted by efficient electron transfer from iridium sensitizers to colloidal MoS2 catalysts. Sci Rep 4:4045Google Scholar
  61. 61.
    Liang W-J, Wang F, Wen M et al (2015) Branched polyethylenimine improves hydrogen photoproduction from a CdSe quantum Dot/[FeFe]-hydrogenase mimic system in neutral aqueous solutions. Chem Eur J 21:3187–3192CrossRefGoogle Scholar
  62. 62.
    Yu W, Noureldine D, Isimjan T et al (2015) Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry. Phys Chem Chem Phys 17:1001–1009CrossRefGoogle Scholar
  63. 63.
    Han ZJ, Qiu F, Eisenberg R, Holland PL, Krauss TD (2012) Photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338:1321–1324CrossRefGoogle Scholar
  64. 64.
    Windle CD, Pastor E, Reynal A et al (2015) Improving the photocatalytic reduction of CO2 to CO through immobilisation of a molecular Re catalyst on TiO2. Chem Eur J 21:3746–3754CrossRefGoogle Scholar
  65. 65.
    Mogyorosi K, Kmetyko A, Czirbus N, Vereb G, Sipos P, Dombi A (2009) Comparison of the substrate dependent performance of Pt-, Au- and Ag-doped TiO2 photocatalysts in H2 production and in decomposition of various organics. React Kinet Catal Lett 98:215–225CrossRefGoogle Scholar
  66. 66.
    Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc 126:4943–4950CrossRefGoogle Scholar
  67. 67.
    Su R, Tiruvalam R, Logsdail AJ et al (2014) Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8:3490–3497CrossRefGoogle Scholar
  68. 68.
    Su R, Tiruvalam R, He Q et al (2012) Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles. ACS Nano 6:6284–6292CrossRefGoogle Scholar
  69. 69.
    Li YH, Xing J, Chen ZJ et al (2013) Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters. Nat Commun 4:2500–2504Google Scholar
  70. 70.
    Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T (2012) Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J Am Chem Soc 134:6309–6315CrossRefGoogle Scholar
  71. 71.
    Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909CrossRefGoogle Scholar
  72. 72.
    Ma B, Wen F, Jiang H, Yang J, Ying P, Li C (2010) The synergistic effects of two Co-catalysts on Zn2GeO4 on photocatalytic water splitting. Catal Lett 134:78–86CrossRefGoogle Scholar
  73. 73.
    Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2 − graphene nanocomposites for Gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2 − graphene truly different from other TiO2 − carbon composite materials? ACS Nano 4:7303–7314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ren Su
    • 1
    Email author
  • Flemming Besenbacher
    • 2
  • Graham Hutchings
    • 3
  1. 1.Syncat@Beijing, Synfuels China Co. Ltd.BeijingP.R. China
  2. 2.Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
  3. 3.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations