Skip to main content

Fundamentals of TiO2 Photocatalysis. Consequences for Some Environmental Applications

  • Chapter
  • First Online:
Heterogeneous Photocatalysis

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

This chapter considers the fundamental phenomena occurring when TiO2 is excited by photons. The focus is first on the formation and fate of the charges generated by the excitation. Then, the roles in photocatalytic reactions of water and oxygen which are almost always present are presented and discussed; the effects of adding ozone or hydrogen peroxide are also briefly indicated. Regarding the photocatalytic degradation of organic compounds – which is involved in potential applications such as self-cleaning materials and air or water purification – the following issues are examined: the hole-induced and hydroxyl radical-induced pathways and the predictability of the nature of the intermediate products. Some of the material aspects of photocatalysis are dealt with through (1) the influence of the structural and textural characteristics of pristine TiO2, (2) the effects of modifying TiO2 by metal deposits or ion doping, and (3) the basic outcomes of combining TiO2 with either another oxide (insulating or semiconducting) or a supplementary adsorbent of high surface area. Conclusions are drawn from these fundamental topics about the applicability of TiO2 photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pichat P (2013) Self-cleaning materials based on solar photocatalysis. In: Suib SL (ed) New and future developments in catalysis, vol 7, Solar photocatalysis. Elsevier, Amsterdam, pp 167–190

    Chapter  Google Scholar 

  2. Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43(14):2229–2246

    Article  CAS  Google Scholar 

  3. Hay SO, Obee T, Luo Z, Jiang T, Meng Y, He J, Murphy SC, Suib S (2015) The viability of photocatalysis for air purification. Molecules 20(1):1319–1356

    Article  CAS  Google Scholar 

  4. Pichat P (ed) (2013) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, Weinheim

    Google Scholar 

  5. Omote M, Kitaoka H, Kobayashi E, Suzuki O, Aratake K, Sano H, Mizutani G, Wolf W, Podloucky R (2005) Spectral, tensor, and ab initio theoretical analysis of optical second harmonic generation from the rutile TiO2 (110) and (001) faces. J Phys Condens Matter 17(8):S175

    Google Scholar 

  6. Manzhos S, Jono R, Yamashita K, Fujisawa J-i, Nagata M, Segawa H (2011) Study of interfacial charge transfer bands and electron recombination in the surface complexes of TCNE, TCNQ, and TCNAQ with TiO2. J Phys Chem C 115(43):21487–21493

    Article  CAS  Google Scholar 

  7. Agrios AG, Gray KA, Weitz E (2004) Narrow-band irradiation of a homologous series of chlorophenols on TiO2: charge-transfer complex formation and reactivity. Langmuir 20(14):5911–5917

    Article  CAS  Google Scholar 

  8. Egerton TA (2014) UV-absorption – the primary process in photocatalysis and some practical consequences. Molecules 19(11):18192–18214

    Article  CAS  Google Scholar 

  9. Enríquez R, Agrios AG, Pichat P (2007) Probing multiple effects of TiO2 sintering temperature on photocatalytic activity in water by use of a series of organic pollutant molecules. Catal Today 120(2):196–202

    Article  CAS  Google Scholar 

  10. Turner GM, Beard MC, Schmuttenmaer CA (2002) Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106(45):11716–11719

    Article  CAS  Google Scholar 

  11. Grela M, Colussi A (1999) Photon energy and photon intermittence effects on the quantum efficiency of photoinduced oxidations in crystalline and metastable TiO2 colloidal nanoparticles. J Phys Chem B 103(14):2614–2619

    Article  CAS  Google Scholar 

  12. Xu C, Yang W, Ren Z, Dai D, Guo Q, Minton TK, Yang X (2013) Strong photon energy dependence of the photocatalytic dissociation rate of methanol on TiO2 (110). J Am Chem Soc 135(50):19039–19045

    Article  CAS  Google Scholar 

  13. Henderson MA (2011) A surface science perspective on photocatalysis. Surf Sci Rep 66(6):185–297

    Article  CAS  Google Scholar 

  14. De Angelis F, Di Valentin C, Fantacci S, Vittadini A, Selloni A (2014) Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem Rev 114(19):9708–9753

    Article  CAS  Google Scholar 

  15. Lantz JM, Corn RM (1994) Time-resolved optical second harmonic generation measurements of picosecond band flattening processes at single crystal TiO2 electrodes. J Phys Chem 98(38):9387–9390

    Article  CAS  Google Scholar 

  16. Salafsky J (1999) Exciton dissociation, charge transport, and recombination in ultrathin, conjugated polymer-TiO2 nanocrystal intermixed composites. Phys Rev B 59(16):10885

    Article  CAS  Google Scholar 

  17. Salvador P (2007) On the nature of photogenerated radical species active in the oxidative degradation of dissolved pollutants with TiO2 aqueous suspensions: a revision in the light of the electronic structure of adsorbed water. J Phys Chem C 111(45):17038–17043

    Article  CAS  Google Scholar 

  18. Nakamura R, Nakato Y (2010) Molecular mechanism of water oxidation reaction at photo-irradiated TiO2 and related metal oxide surfaces. Solid State Phenom 162:1–27

    Article  CAS  Google Scholar 

  19. Ikeda S, Sugiyama N, Murakami S-y, Kominami H, Kera Y, Noguchi H, Uosaki K, Torimoto T, Ohtani B (2003) Quantitative analysis of defective sites in titanium (IV) oxide photocatalyst powders. Phys Chem Chem Phys 5(4):778–783

    Article  CAS  Google Scholar 

  20. Warren DS, McQuillan AJ (2004) Influence of adsorbed water on phonon and UV-induced IR absorptions of TiO2 photocatalytic particle films. J Phys Chem B 108(50):19373–19379

    Article  CAS  Google Scholar 

  21. Planelles J, Movilla J (2006) Trapping electrons in semiconductor air bubbles: a theoretical approach. Phys Rev B 73(23):235350

    Article  CAS  Google Scholar 

  22. Deskins NA, Rousseau R, Dupuis M (2009) Localized electronic states from surface hydroxyls and polarons in TiO2 (110). J Phys Chem C 113(33):14583–14586

    Article  CAS  Google Scholar 

  23. Szczepankiewicz SH, Moss JA, Hoffmann MR (2002) Slow surface charge trapping kinetics on irradiated TiO2. J Phys Chem B 106(11):2922–2927

    Article  CAS  Google Scholar 

  24. Kuznetsov A, Kameneva O, Alexandrov A, Bityurin N, Chhor K, Kanaev A (2006) Chemical activity of photoinduced Ti3+ centers in titanium oxide gels. J Phys Chem B 110(1):435–441

    Article  CAS  Google Scholar 

  25. Kormann C, Bahnemann DW, Hoffmann MR (1988) Preparation and characterization of quantum-size titanium dioxide. J Phys Chem 92(18):5196–5201

    Article  CAS  Google Scholar 

  26. Rabani J, Yamashita K, Ushida K, Stark J, Kira A (1998) Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser. J Phys Chem B 102(10):1689–1695

    Article  CAS  Google Scholar 

  27. Van de Lagemaat J, Frank A (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105(45):11194–11205

    Article  CAS  Google Scholar 

  28. Huber R, Spörlein S, Moser JE, Grätzel M, Wachtveitl J (2000) The role of surface states in the ultrafast photoinduced electron transfer from sensitizing dye molecules to semiconductor colloids. J Phys Chem B 104(38):8995–9003

    Article  CAS  Google Scholar 

  29. Peiró AM, Colombo C, Doyle G, Nelson J, Mills A, Durrant JR (2006) Photochemical reduction of oxygen adsorbed to nanocrystalline TiO2 films: a transient absorption and oxygen scavenging study of different TiO2 preparations. J Phys Chem B 110(46):23255–23263

    Article  CAS  Google Scholar 

  30. Cai Y, Strømme M, Welch K (2013) Photocatalytic antibacterial effects are maintained on resin-based TiO2 nanocomposites after cessation of UV irradiation. PLoS One 8(10)

    Google Scholar 

  31. Coronado JM, Maira AJ, Martınez-Arias A, Conesa JC, Soria J (2002) EPR study of the radicals formed upon UV irradiation of ceria-based photocatalysts. J Photochem Photobiol A 150(1):213–221

    Article  CAS  Google Scholar 

  32. Berger T, Diwald O, Knözinger E, Sterrer M, Yates JT Jr (2006) UV induced local heating effects in TiO2 nanocrystals. Phys Chem Chem Phys 8(15):1822–1826

    Article  CAS  Google Scholar 

  33. Hurum DC, Gray KA, Rajh T, Thurnauer MC (2005) Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem B 109(2):977–980

    Article  CAS  Google Scholar 

  34. Lawless D, Serpone N, Meisel D (1991) Role of hydroxyl radicals and trapped holes in photocatalysis. A pulse radiolysis study. J Phys Chem 95(13):5166–5170

    Article  CAS  Google Scholar 

  35. Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M (2001) Direct observation of interfacial hole transfer from a photoexcited TiO2 particle to an adsorbed molecule SCN-by femtosecond diffuse reflectance spectroscopy. Res Chem Intermed 27(1):177–187

    Article  CAS  Google Scholar 

  36. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M (2006) Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: evaluation of the reaction rates and yields. J Am Chem Soc 128(2):416–417

    Article  CAS  Google Scholar 

  37. Shkrob IA, Sauer MC, Gosztola D (2004) Efficient, rapid photooxidation of chemisorbed polyhydroxyl alcohols and carbohydrates by TiO2 nanoparticles in an aqueous solution. J Phys Chem B 108(33):12512–12517

    Article  CAS  Google Scholar 

  38. Tachikawa T, Tojo S, Fujitsuka M, Majima T (2004) Direct observation of the cascade hole transfer giving free radical cations of trans-stilbenes during TiO2 photocatalytic reactions. Chem Phys Lett 392(1):50–54

    Article  CAS  Google Scholar 

  39. Ferry JL, Glaze WH (1998) Photocatalytic reduction of nitroorganics over illuminated titanium dioxide: electron transfer between excited-state TiO2 and nitroaromatics. J Phys Chem B 102(12):2239–2244

    Article  CAS  Google Scholar 

  40. Minero C, Maurino V, Pelizzetti E (2003) Mechanisms of the photocatalytic transformation of organic compounds. In: Ramamurthy V, Schanze KS (eds) Molecular and supramolecular photochemistry, vol 10, Semiconductor photochemistry and photophysics. Marcel Dekker, New York, pp 211–230

    Google Scholar 

  41. Muggli DS, Falconer JL (1999) UV-enhanced exchange of O2 with H2O adsorbed on TiO2. J Catal 181(1):155–159

    Article  CAS  Google Scholar 

  42. Pang X, Chen C, Ji H, Che Y, Ma W, Zhao J (2014) Unraveling the photocatalytic mechanisms on TiO2 surfaces using the oxygen-18 isotopic label technique. Molecules 19(10):16291–16311

    Article  CAS  Google Scholar 

  43. Du Y, Deskins NA, Zhang Z, Dohnalek Z, Dupuis M, Lyubinetsky I (2009) Two pathways for water interaction with oxygen adatoms on TiO2 (110). Phys Rev Lett 102(9):096102

    Article  CAS  Google Scholar 

  44. Obee TN, Brown RT (1995) TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1, 3-butadiene. Environ Sci Technol 29(5):1223–1231

    Article  CAS  Google Scholar 

  45. Tilocca A, Selloni A (2004) Vertical and lateral order in adsorbed water layers on anatase TiO2 (101). Langmuir 20(19):8379–8384

    Article  CAS  Google Scholar 

  46. Zhao Z, Li Z, Zou Z (2012) Structure and properties of water on the anatase TiO2 (101) surface: from single-molecule adsorption to interface formation. J Phys Chem C 116(20):11054–11061

    Article  CAS  Google Scholar 

  47. Pichat P (2010) Some views about indoor air photocatalytic treatment using TiO2: conceptualization of humidity effects, active oxygen species, problem of C1–C3 carbonyl pollutants. Appl Catal Environ 99(3):428–434

    Article  CAS  Google Scholar 

  48. Pichat P (2003) Photocatalytic degradation of pollutants in water and air: basic concepts and applications. In: Tarr MA (ed) Chemical degradation methods for wastes and pollutants: environmental and industrial applications. Marcel Dekker, New York, pp 77–119

    Google Scholar 

  49. Coronado JM, Soria J (2007) ESR study of the initial stages of the photocatalytic oxidation of toluene over TiO2 powders. Catal Today 123(1):37–41

    Article  CAS  Google Scholar 

  50. Kataoka S, Tejedor-Tejedor MI, Coronado JM, Anderson MA (2004) Thin-film transmission IR spectroscopy as an in situ probe of the gas–solid interface in photocatalytic processes. J Photochem Photobiol A 163(3):323–329

    Article  CAS  Google Scholar 

  51. Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14(12):393–400

    Article  CAS  Google Scholar 

  52. Pichat P, Guillard C, Amalric L, Renard A-C, Plaidy O (1995) Assessment of the importance of the role of H2O2 and O2 •− in the photocatalytic degradation of 1,2-dimethoxybenzene. Sol Energy Mater Sol Cells 38(1):391–399

    Article  CAS  Google Scholar 

  53. Cermenati L, Pichat P, Guillard C, Albini A (1997) Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-fenton generated OH radicals and superoxide dismutase. J Phys Chem B 101(14):2650–2658

    Article  CAS  Google Scholar 

  54. Nosaka Y, Nosaka AY (2013) Identification and roles of the active species generated on various photocatalysts. In: Pichat P (ed) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, Weinheim, pp 1–24

    Chapter  Google Scholar 

  55. Jenks WS (2013) Photocatalytic reaction pathways–effects of molecular structure, catalyst, and wavelength. In: Pichat P (ed) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, Weinheim, pp 25–51

    Chapter  Google Scholar 

  56. Shao M-h, Liu P, Adzic RR (2006) Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J Am Chem Soc 128(23):7408–7409

    Article  CAS  Google Scholar 

  57. Mattioli G, Filippone F, Amore Bonapasta A (2006) Reaction intermediates in the photoreduction of oxygen molecules at the (101) TiO2 (anatase) surface. J Am Chem Soc 128(42):13772–13780

    Article  CAS  Google Scholar 

  58. Pichat P, Courbon H, Enriquez R, Tan TT, Amal R (2007) Light-induced isotopic exchange between O2 and semiconductor oxides, a characterization method that deserves not to be overlooked. Res Chem Intermed 33(3):239–250

    Article  CAS  Google Scholar 

  59. Pichat P, Enriquez R, Mietton E (2010) Investigations of photo-excited TiO2 based on time resolved microwave conductivity and oxygen isotopic exchange. Solid State Phenom 162:41–48

    Article  CAS  Google Scholar 

  60. Lu G, Linsebigler A, YatesJr JT (1995) Photooxidation of CH3Cl on TiO2 (110): a mechanism not involving H2O. J Phys Chem 99(19):7626–7631

    Article  CAS  Google Scholar 

  61. von Sonntag C (2006) Free-radical-induced DNA damage and its repair. Springer, Heidelberg

    Book  Google Scholar 

  62. Carteau D, Pichat P (2010) Degradation of an ether–alcohol (3-ethoxypropan-1-ol) by photo-Fenton-generated OH radicals: products analysis and formation pathways; relevance to atmospheric water-phase chemistry. Res Chem Intermed 36(2):141–153

    Article  CAS  Google Scholar 

  63. Irawaty W, Friedmann D, Scott J, Pichat P, Amal R (2011) Photocatalysis in TiO2 aqueous suspension: effects of mono-or di-hydroxyl substitution of butanedioic acid on the disappearance and mineralisation rates. Catal Today 178(1):51–57

    Article  CAS  Google Scholar 

  64. Pichat P, Disdier J, Hoang-Van C, Mas D, Goutailler G, Gaysse C (2000) Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal Today 63(2):363–369

    Article  CAS  Google Scholar 

  65. Taranto J, Frochot D, Pichat P (2007) Combining cold plasma and TiO2 photocatalysis to purify gaseous effluents: a preliminary study using methanol-contaminated air. Ind Eng Chem Res 46(23):7611–7614

    Article  CAS  Google Scholar 

  66. Jenny B, Pichat P (1991) Determination of the actual photocatalytic rate of hydrogen peroxide decomposition over suspended titania. Fitting to the Langmuir-Hinshelwood form. Langmuir 7(5):947–954

    Article  CAS  Google Scholar 

  67. Nandi D, Krishnakumar E, Rosa A, Schmidt W-F, Illenberger E (2003) Dissociative electron attachment to H2O2: a very effective source for OH and OH− generation. Chem Phys Lett 373(5):454–459

    Article  CAS  Google Scholar 

  68. Rengifo-Herrera JA, Rincón AG, Pulgarin C (2013) Waterborne escherichia coli inactivation by TiO2 photoassisted processes: a brief overview. In: Pichat P (ed) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, Weinheim, pp 295–309

    Chapter  Google Scholar 

  69. Byrne JA, Dunlop PSM, Hamilton JWJ, Fernández-Ibáñez P, Polo-López I, Sharma PK, Vennard ASM (2015) A review of heterogeneous photocatalysis for water and surface disinfection. Molecules 20(4):5574–5615

    Article  CAS  Google Scholar 

  70. Zubkov T, Stahl D, Thompson TL, Panayotov D, Diwald O, Yates JT (2005) Ultraviolet light-induced hydrophilicity effect on TiO2 (110) (1 × 1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J Phys Chem B 109(32):15454–15462

    Article  CAS  Google Scholar 

  71. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582

    Article  CAS  Google Scholar 

  72. Li Y, Wen B, Ma W, Chen C, Zhao J (2012) Photocatalytic degradation of aromatic pollutants: a pivotal role of conduction band electron in distribution of hydroxylated intermediates. Environ Sci Technol 46(9):5093–5099

    Article  CAS  Google Scholar 

  73. Li Y, Wen B, Yu C, Chen C, Ji H, Ma W, Zhao J (2012) Pathway of oxygen incorporation from O2 in TiO2 photocatalytic hydroxylation of aromatics: oxygen isotope labeling studies. Chem Eur J 18(7):2030–2039

    Article  CAS  Google Scholar 

  74. Hathway T, Jenks WS (2008) Effects of sintering of TiO2 particles on the mechanisms of photocatalytic degradation of organic molecules in water. J Photochem Photobiol A 200(2):216–224

    Article  CAS  Google Scholar 

  75. Zayani G, Bousselmi L, Pichat P, Mhenni F, Ghrabi A (2006) Photocatalytic degradation of four textile azo dyes in aqueous TiO2 suspensions: practical outcomes and revisited pathways. J Adv Oxid Technol 9(1):65–78

    CAS  Google Scholar 

  76. Angelomé PC, Andrini L, Calvo ME, Requejo FG, Bilmes SA, Soler-Illia GJ (2007) Mesoporous anatase TiO2 films: use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior. J Phys Chem C 111(29):10886–10893

    Article  CAS  Google Scholar 

  77. Ohsawa T, Lyubinetsky IV, Henderson MA, Chambers SA (2008) Hole-mediated photodecomposition of trimethyl acetate on a TiO2 (001) anatase epitaxial thin film surface. J Phys Chem C 112(50):20050–20056

    Article  CAS  Google Scholar 

  78. Ohtani B (2013) Design and development of active titania and related photocatalysts. In: Pichat P (ed) Photocatalysis and water purification: from fundamentals to recent applications. Wiley, Weinheim, pp 73–102

    Chapter  Google Scholar 

  79. Liu G, Jimmy CY, Lu GQM, Cheng H-M (2011) Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun 47(24):6763–6783

    Article  CAS  Google Scholar 

  80. Jiang Z, Tang Y, Tay Q, Zhang Y, Malyi OI, Wang D, Deng J, Lai Y, Zhou H, Chen X (2013) Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv Energy Mater 3(10):1368–1380

    Article  CAS  Google Scholar 

  81. Balázs N, Mogyorósi K, Srankó DF, Pallagi A, Alapi T, Oszkó A, Dombi A, Sipos P (2008) The effect of particle shape on the activity of nanocrystalline TiO2 photocatalysts in phenol decomposition. Appl Catal Environ 84(3):356–362

    Article  CAS  Google Scholar 

  82. Dimitrijevic NM, Saponjic ZV, Rabatic BM, Poluektov OG, Rajh T (2007) Effect of size and shape of nanocrystalline TiO2 on photogenerated charges. An EPR study. J Phys Chem C 111(40):14597–14601

    Article  CAS  Google Scholar 

  83. Pichat P (2014) Are TiO2 nanotubes worth using in photocatalytic purification of air and water? Molecules 19(9):15075–15087

    Article  CAS  Google Scholar 

  84. Almquist CB, Biswas P (2002) Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J Catal 212(2):145–156

    Article  CAS  Google Scholar 

  85. Vorontsov A, Savinov E, Barannik G, Troitsky V, Parmon V (1997) Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2. Catal Today 39(3):207–218

    Article  CAS  Google Scholar 

  86. Einaga H, Harada M, Futamura S, Ibusuki T (2003) Generation of active sites for CO photooxidation on TiO2 by platinum deposition. J Phys Chem B 107(35):9290–9297

    Article  CAS  Google Scholar 

  87. Gong D, Subramaniam VP, Highfield JG, Tang Y, Lai Y, Chen Z (2011) In situ mechanistic investigation at the liquid/solid interface by attenuated total reflectance FTIR: ethanol photo-oxidation over pristine and platinized TiO2 (P25). ACS Catal 1(8):864–871

    Article  CAS  Google Scholar 

  88. Rosseler O, Ulhaq-Bouillet C, Bonnefont A, Pronkin S, Savinova E, Louvet A, Keller V, Keller N (2015) Structural and electronic effects in bimetallic PdPt nanoparticles on TiO2 for improved photocatalytic oxidation of CO in the presence of humidity. Appl Catal Environ 166:381–392

    Article  CAS  Google Scholar 

  89. Hoang-Van C, Pichat P, Mozzanega M-N (1994) Room-temperature hydrogen transfer from liquid methanol or 2-propanol to diphenylacetylene over group VIII metal/TiO2 photocatalysts. J Mol Catal 92(2):187–199

    Article  CAS  Google Scholar 

  90. Driessen M, Grassian V (1998) Photooxidation of trichloroethylene on Pt/TiO2. J Phys Chem B 102(8):1418–1423

    Article  CAS  Google Scholar 

  91. Pichat P (1987) Surface-properties, activity and selectivity of bifunctional powder photocatalysts. New J Chem 11(2):135–140

    CAS  Google Scholar 

  92. Joo JB, Dillon R, Lee I, Yin Y, Bardeen CJ, Zaera F (2014) Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2. Proc Natl Acad Sci 111(22):7942–7947

    Article  CAS  Google Scholar 

  93. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@ TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc 127(11):3928–3934

    Article  CAS  Google Scholar 

  94. Highfield J, Chen M, Nguyen P, Chen Z (2009) Mechanistic investigations of photo-driven processes over TiO2 by in-situ DRIFTS-MS: part 1. Platinization and methanol reforming. Energy Environ Sci 2(9):991–1002

    Article  CAS  Google Scholar 

  95. Takeuchi K, Nakamura I, Matsumoto O, Sugihara S, Ando M, Ihara T (2000) Preparation of visible-light-responsive titanium oxide photocatalysts by plasma treatment. Chem Lett 29(12):1354–1355

    Article  Google Scholar 

  96. Yan X, Ohno T, Nishijima K, Abe R, Ohtani B (2006) Is methylene blue an appropriate substrate for a photocatalytic activity test? A study with visible-light responsive titania. Chem Phys Lett 429(4):606–610

    Article  CAS  Google Scholar 

  97. Mills A (2012) An overview of the methylene blue ISO test for assessing the activities of photocatalytic films. Appl Catal Environ 128:144–149

    Article  CAS  Google Scholar 

  98. Ollis D, Silva CG, Faria J (2015) Simultaneous photochemical and photocatalyzed liquid phase reactions: dye decolorization kinetics. Catal Today 240:80–85

    Article  CAS  Google Scholar 

  99. Iino K, Kitano M, Takeuchi M, Matsuoka M, Anpo M (2006) Design and development of second-generation titanium oxide photocatalyst materials operating under visible light irradiation by applying advanced ion-engineering techniques. Curr Appl Phys 6(6):982–986

    Article  Google Scholar 

  100. Lee K, Lee N, Shin S, Lee H, Kim S (2006) Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO2 sols. Mater Sci Eng B 129(1):109–115

    Article  CAS  Google Scholar 

  101. Sun B, Reddy EP, Smirniotis PG (2005) Visible light Cr (VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environ Sci Technol 39(16):6251–6259

    Article  CAS  Google Scholar 

  102. Yalçın Y, Kılıç M, Çınar Z (2010) Fe+ 3-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity. Appl Catal Environ 99(3):469–477

    Article  CAS  Google Scholar 

  103. Gurkan YY, Kasapbasi E, Cinar Z (2013) Enhanced solar photocatalytic activity of TiO2 by selenium (IV) ion-doping: characterization and DFT modeling of the surface. Chem Eng J 214:34–44

    Article  CAS  Google Scholar 

  104. Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 32(4):364–365

    Article  CAS  Google Scholar 

  105. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon‐modified titanium dioxide. Angew Chem Int Ed 42(40):4908–4911

    Article  CAS  Google Scholar 

  106. Kitano M, Funatsu K, Matsuoka M, Ueshima M, Anpo M (2006) Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J Phys Chem B 110(50):25266–25272

    Article  CAS  Google Scholar 

  107. Mitoraj D, Kisch H (2008) the nature of nitrogen‐modified titanium dioxide photocatalysts active in visible light. Angew Chem Int Ed 47(51):9975–9978

    Article  CAS  Google Scholar 

  108. Sun H, Wang S, Ang HM, Tadé MO, Li Q (2010) Halogen element modified titanium dioxide for visible light photocatalysis. Chem Eng J 162(2):437–447

    Article  CAS  Google Scholar 

  109. Dozzi MV, Livraghi S, Giamello E, Selli E (2011) Photocatalytic activity of S-and F-doped TiO2 in formic acid mineralization. Photochem Photobiol Sci 10(3):343–349

    Article  CAS  Google Scholar 

  110. Liu G, Zhao Y, Sun C, Li F, Lu GQ, Cheng HM (2008) Synergistic effects of B/N doping on the visible‐light photocatalytic activity of mesoporous TiO2. Angew Chem Int Ed 47(24):4516–4520

    Article  CAS  Google Scholar 

  111. Dong F, Guo S, Wang H, Li X, Wu Z (2011) Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. J Phys Chem C 115(27):13285–13292

    Article  CAS  Google Scholar 

  112. McEvoy JG, Cui W, Zhang Z (2013) Degradative and disinfective properties of carbon-doped anatase–rutile TiO2 mixtures under visible light irradiation. Catal Today 207:191–199

    Article  CAS  Google Scholar 

  113. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PS, Hamilton JW, Byrne JA, O’Shea K (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal Environ 125:331–349

    Article  CAS  Google Scholar 

  114. Xu QC, Wellia DV, Yan S, Liao DW, Lim TM, Tan TTY (2011) Enhanced photocatalytic activity of C–N-codoped TiO2 films prepared via an organic-free approach. J Hazard Mater 188(1):172–180

    Article  CAS  Google Scholar 

  115. Zhang K, Wang X, He T, Guo X, Feng Y (2014) Preparation and photocatalytic activity of B–N co-doped mesoporous TiO2. Powder Technol 253:608–613

    Article  CAS  Google Scholar 

  116. Su W, Zhang Y, Li Z, Wu L, Wang X, Li J, Fu X (2008) Multivalency iodine doped TiO2: preparation, characterization, theoretical studies, and visible-light photocatalysis. Langmuir 24(7):3422–3428

    Article  CAS  Google Scholar 

  117. Tojo S, Tachikawa T, Fujitsuka M, Majima T (2008) Iodine-doped TiO2 photocatalysts: correlation between band structure and mechanism. J Phys Chem C 112(38):14948–14954

    Article  CAS  Google Scholar 

  118. Dolat D, Mozia S, Wróbel R, Moszyński D, Ohtani B, Guskos N, Morawski A (2015) Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Appl Catal Environ 162:310–318

    Article  CAS  Google Scholar 

  119. Serpone N, Emeline AV, Kuznetsov VN, Ryabchuk VK (2010) Second generation visible-light-active photocatalysts: preparation, optical properties, and consequences of dopants on the band gap energy of TiO2. In: Anpo M, Kamat PV (eds) Environmentally benign photocatalysts: applications of titanium oxide-based materials. Springer, New York, pp 35–111

    Chapter  Google Scholar 

  120. Cheng YH, Subramaniam VP, Gong D, Tang Y, Highfield J, Pehkonen SO, Pichat P, Schreyer MK, Chen Z (2012) Nitrogen-sensitized dual phase titanate/titania for visible-light driven phenol degradation. J Solid State Chem 196:518–527

    Article  CAS  Google Scholar 

  121. Pelaez M, Armah A, Stathatos E, Falaras P, Dionysiou DD (2009) Visible light-activated NF-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal Today 144(1):19–25

    Article  CAS  Google Scholar 

  122. Noguchi H, Nakajima A, Watanabe T, Hashimoto K (2002) Removal of bromate ion from water using TiO2 and alumina-loaded TiO2 photocatalysts. Water Sci Technol 46(11–12):27–31

    CAS  Google Scholar 

  123. Puzenat E, Pichat P (2003) Studying TiO2 coatings on silica-covered glass by O2 photosorption measurements and FTIR–ATR spectrometry: correlation with the self-cleaning efficacy. J Photochem Photobiol A 160(1):127–133

    Article  CAS  Google Scholar 

  124. Beydoun D, Amal R, Low G, McEvoy S (2002) Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J Mol Catal A 180(1):193–200

    Article  CAS  Google Scholar 

  125. Bessekhouad Y, Robert D, Weber J-V (2005) Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today 101(3):315–321

    Article  CAS  Google Scholar 

  126. Bandara J, Udawatta C, Rajapakse C (2005) Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem Photobiol Sci 4(11):857–861

    Article  CAS  Google Scholar 

  127. Zorn ME, Tompkins DT, Zeltner WA, Anderson MA (1999) Photocatalytic oxidation of acetone vapor on TiO2/ZrO2 thin films. Appl Catal Environ 23(1):1–8

    Article  CAS  Google Scholar 

  128. Chen D, Zhang H, Hu S, Li J (2008) Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites. J Phys Chem C 112(1):117–122

    Article  CAS  Google Scholar 

  129. Vinodgopal K, Kamat PV (1995) Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ Sci Technol 29(3):841–845

    Article  CAS  Google Scholar 

  130. Amama P, Itoh K, Murabayashi M (2004) Effect of RuO2 deposition on the activity of TiO2: photocatalytic oxidation of trichloroethylene in aqueous phase. J Mater Sci 39(13):4349–4351

    Article  CAS  Google Scholar 

  131. Papp J, Soled S, Dwight K, Wold A (1994) Surface acidity and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2 photocatalysts. Chem Mater 6(4):496–500

    Article  CAS  Google Scholar 

  132. Shchukin D, Poznyak S, Kulak A, Pichat P (2004) TiO2-In2O3 photocatalysts: preparation, characterisations and activity for 2-chlorophenol degradation in water. J Photochem Photobiol A 162(2):423–430

    Article  CAS  Google Scholar 

  133. Cui H, Dwight K, Soled S, Wold A (1995) Surface acidity and photocatalytic activity of Nb2O5/TiO2 photocatalysts. J Solid State Chem 115(1):187–191

    Article  CAS  Google Scholar 

  134. Tuan AC, Kaspar TC, Droubay T, Rogers J, Chambers SA (2003) Band offsets for the epitaxial TiO2/SrTiO3/Si (001) system. Appl Phys Lett 83(18):3734–3736

    Article  CAS  Google Scholar 

  135. Reszczyńska J, Grzyb T, Sobczak JW, Lisowski W, Gazda M, Ohtani B, Zaleska A (2014) Lanthanide co-doped TiO2: the effect of metal type and amount on surface properties and photocatalytic activity. Appl Surf Sci 307:333–345

    Article  CAS  Google Scholar 

  136. Tobaldi D, Pullar R, Škapin AS, Seabra M, Labrincha J (2014) Visible light activated photocatalytic behaviour of rare earth modified commercial TiO2. Mater Res Bull 50:183–190

    Article  CAS  Google Scholar 

  137. Lee MC, Choi W (2002) Solid phase photocatalytic reaction on the soot/TiO2 interface: the role of migrating OH radicals. J Phys Chem B 106(45):11818–11822

    Article  CAS  Google Scholar 

  138. Lee S-K, McIntyre S, Mills A (2004) Visible illustration of the direct, lateral and remote photocatalytic destruction of soot by titania. J Photochem Photobiol A 162(1):203–206

    Article  CAS  Google Scholar 

  139. Haick H, Paz Y (2001) Remote photocatalytic activity as probed by measuring the degradation of self-assembled monolayers anchored near microdomains of titanium dioxide. J Phys Chem B 105(15):3045–3051

    Article  CAS  Google Scholar 

  140. Puma GL, Bono A, Krishnaiah D, Collin JG (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. J Hazard Mater 157(2):209–219

    Article  CAS  Google Scholar 

  141. Vaisman E, Cook RL, Langford CH (2000) Characterization of a composite photocatalyst. J Phys Chem B 104(36):8679–8684

    Article  CAS  Google Scholar 

  142. Kamegawa T, Ishiguro Y, Kido R, Yamashita H (2014) Design of composite photocatalyst of TiO2 and Y-zeolite for degradation of 2-propanol in the gas phase under UV and visible light irradiation. Molecules 19(10):16477–16488

    Article  CAS  Google Scholar 

  143. Yasumori A, Yanagida S, Sawada J (2015) Preparation of a titania/X-zeolite/porous glass composite photocatalyst using hydrothermal and drop coating processes. Molecules 20(2):2349–2363

    Article  CAS  Google Scholar 

  144. Pichat P, Khalaf H, Tabet D, Houari M, Saidi M (2005) Ti-montmorillonite as photocatalyst to remove 4-chlorophenol in water and methanol in air. Environ Chem Lett 2(4):191–194

    Article  CAS  Google Scholar 

  145. Belessi V, Lambropoulou D, Konstantinou I, Katsoulidis A, Pomonis P, Petridis D, Albanis T (2007) Structure and photocatalytic performance of TiO2/clay nanocomposites for the degradation of dimethachlor. Appl Catal Environ 73(3):292–299

    Article  CAS  Google Scholar 

  146. Kibanova D, Cervini-Silva J, Destaillats H (2009) Efficiency of clay − TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant. Environ Sci Technol 43(5):1500–1506

    Article  CAS  Google Scholar 

  147. Radich JG, Krenselewski AL, Zhu J, Kamat PV (2014) Is graphene a stable platform for photocatalysis? Mineralization of reduced graphene oxide with UV-irradiated TiO2 nanoparticles. Chem Mater 26(15):4662–4668

    Article  CAS  Google Scholar 

  148. Pichat P (2014) Representative examples of infrared spectroscopy uses in semiconductor photocatalysis. Catal Today 224:251–257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Pichat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pichat, P. (2016). Fundamentals of TiO2 Photocatalysis. Consequences for Some Environmental Applications. In: Colmenares, J., Xu, YJ. (eds) Heterogeneous Photocatalysis. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48719-8_10

Download citation

Publish with us

Policies and ethics