Advertisement

Pathophysiologie des Hydrozephalus

  • M. U. Schuhmann
Chapter

Zusammenfassung

Der kindliche Hydrozephalus ist pathophysiologisch vom Erwachsenenhydrozephalus nicht nur in Bezug auf seine Ätiologie, sondern auch in Bezug auf die wirksamen pathophysiologischen Mechanismen so unterschiedlich, dass er grundsätzlich getrennt betrachtet werden sollte. Eine alles vereinende schlüssige pathophysiologische Hypothese ist ebenso fehlend wie nicht sinnvoll, da eine kaum bezifferbare Anzahl von Ursachen zum Hydrozephalus führen kann. Vereinendes, aber nicht alleinig diagnostisches Element des Hydrozephalus ist nur die Ventrikulomegalie. Dieses Kapitel behandelt mögliche pathophysiologische Ursachen, die zur Ventrikulomegalie führen, versucht Grundlagen im Licht aktueller Überlegungen zu vermitteln und stellt dar, dass sowohl ein druckaktiver als auch ein druckkompensierter kindlicher Hydrozephalus existiert. Die Ätiologie wie das Alter zum Erkrankungsbeginn sind von Bedeutung für die Auswahl zwischen den möglichen therapeutischen Alternativen Shunt oder endoskopische Ventrikulozisternostomie (ETV).

Literatur

  1. Bateman GA (2005) Extending the hydrodynamic hypothesis in chronic hydrocephalus. Neurosurg Rev 28:333–334.  https://doi.org/10.1007/s10143-005-0405-6 CrossRefPubMedGoogle Scholar
  2. Bering EA (1952) Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg 9:275–287.  https://doi.org/10.3171/jns.1952.9.3.0275 CrossRefPubMedGoogle Scholar
  3. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNSCrossRefGoogle Scholar
  4. Cserr HF (1988) Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann N Y Acad Sci 529:9–20CrossRefGoogle Scholar
  5. Cushing HW (1926) Studies in Intracranial Physiology and Surgery: The Third Circulation. The Hypophysis. The Gliomas. The Cameron Prize Lectures Delivered at the at the University of Edinburgh, October 19–22, 1925. OxfordGoogle Scholar
  6. Dandy WE, Blackfan KD (1913) An experimental and clinical study of internal hydrocephalus. JAMA 61:2216–2217.  https://doi.org/10.1001/jama.1913.04350260014006 CrossRefGoogle Scholar
  7. Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child 8:406–481CrossRefGoogle Scholar
  8. Gómez DG, DiBenedetto AT, Pavese AM et al. (1982) Development of arachnoid villi and granulations in man. Acta Anat 111:247–258PubMedGoogle Scholar
  9. Greitz D (1993) Cerebrospinal-fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol 34:1–23CrossRefGoogle Scholar
  10. Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27:145–165.  https://doi.org/10.1007/s10143-004-0327-8 CrossRefPubMedGoogle Scholar
  11. Greitz D, Hannerz J (1996) A proposed model of cerebrospinal fluid circulation: Observations with radionuclide cisternography. Am J Neuroradiol 17:431–438PubMedGoogle Scholar
  12. Johnston M, Zakharov A, Papaiconomou C et al. (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2.  https://doi.org/10.1186/1743-8454-1-2
  13. MacAulay N, Zeuthen T (2010) Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 168:941–956.  https://doi.org/10.1016/j.neuroscience.2009.09.016 CrossRefPubMedGoogle Scholar
  14. Masserman JH (1934) Cerebrospinal hydrodynamics: IV. Clinical experimental studies. Arch NeurPsych 32:523–553.  https://doi.org/10.1001/archneurpsyc.1934.02250090060006 CrossRefGoogle Scholar
  15. McComb JG (1983) Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 59:369–383.  https://doi.org/10.3171/jns.1983.59.3.0369 CrossRefPubMedGoogle Scholar
  16. Oi S, Di Rocco C (2006) Proposal of „evolution theory in cerebrospinal fluid dynamics“ and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22:662–669.  https://doi.org/10.1007/s00381-005-0020-4 CrossRefPubMedGoogle Scholar
  17. Papaiconomou C, Zakharov A, Azizi N et al. (2004) Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv Syst 20:29–36.  https://doi.org/10.1007/s00381-003-0840-z CrossRefPubMedGoogle Scholar
  18. Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 21(7):9.  https://doi.org/10.1186/1743-8454-7-9 CrossRefGoogle Scholar
  19. Russell DS (1949) Observations on the pathology of hydrocephalus (special report series Medical Research Council, No. 265). 112–113Google Scholar
  20. Schuhmann MU, Sood S, McAllister JP et al. (2008) Value of overnight monitoring of intracranial pressure in hydrocephalic children. Pediatr Neurosurg 44:269–279.  https://doi.org/10.1159/000131675 CrossRefPubMedGoogle Scholar
  21. Silverberg GD, Mayo M, Saul T et al. (2003) Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:506–511CrossRefGoogle Scholar
  22. Weed LH (1914) Studies on Cerebro-Spinal Fluid. No. II : The Theories of Drainage of Cerebro-Spinal Fluid with an Analysis of the Methods of Investigation. The Journal of Medical Research 31:21–49PubMedPubMedCentralGoogle Scholar
  23. Weerakkody RA, Czosnyka M, Schuhmann MU et al. (2011) Clinical assessment of cerebrospinal fluid dynamics in hydrocephalus. Guide to interpretation based on observational study. Acta Neurol Scand 124:85–98.  https://doi.org/10.1111/j.1600-0404.2010.01467.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Bereich Pädiatrische Neurochirurgie, Klinik für NeurochirurgieUniversitätsklinikum TübingenTübingenDeutschland

Personalised recommendations