Skip to main content

Search for the Signal of Monotop Production at the Early LHC

  • Chapter
  • First Online:
QCD Higher-Order Effects and Search for New Physics

Part of the book series: Springer Theses ((Springer Theses))

  • 425 Accesses

Abstract

The main tasks of the LHC are to answer the fundamental questions in particle physics: whether the Higgs boson exist or not; are there new physics beyond the SM such as supersymmetry (SUSY), extra dimension, etc., at the TeV scale? The first stage of the LHC has discovered a scalar resonance closely resembling the SM Higgs boson, but provides no clue on the new physics beyond the SM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remind that the single top production discussed in the last chapter contains a top and a jet in the final state.

References

  1. E. Alvarez, L. Da Rold, J.I.S. Vietto, A. Szynkman, Phenomenology of a light gluon resonance in top-physics at Tevatron and LHC. JHEP 1109, 007 (2011). arXiv:1107.1473

    Article  ADS  Google Scholar 

  2. U. Haisch, S. Westhoff, Massive Color-octet bosons: bounds on effects in top-quark pair production. JHEP 1108, 088 (2011). arXiv:1106.0529

  3. E.L. Berger, Q.-H. Cao, C.-R. Chen, H. Zhang, Top quark polarization as a probe of models with extra gauge bosons. Phys. Rev. D 83, 114026 (2011). arXiv:1103.3274

    Article  ADS  Google Scholar 

  4. J. Cao, L. Wu, J.M. Yang, New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models. Phys. Rev. D 83, 034024 (2011). arXiv:1011.5564

    Article  ADS  Google Scholar 

  5. C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni, G. Servant, Non-resonant new physics in top pair production at hadron colliders. JHEP 03, 125 (2011). arXiv:1010.6304

    Article  ADS  Google Scholar 

  6. M. Battaglia, G. Servant, Four-top production and t tbar + missing energy events at multi TeV e+e- colliders. Nuovo Cim. co33N2, 203–208 (2011). arXiv:1005.4632

  7. Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy, C.E.M. Wagner, Forward-backward asymmetry of top quark pair production. Phys. Rev. D 81, 114004 (2010). arXiv:1003.3461

    Article  ADS  Google Scholar 

  8. J. Alwall, J.L. Feng, J. Kumar, S. Su, Dark matter-motivated searches for exotic 4th generation quarks in tevatron and early LHC data. Phys. Rev. D 81, 114027 (2010). arXiv:1002.3366

    Article  ADS  Google Scholar 

  9. T. Han, R. Mahbubani, D.G. Walker, L.-T. Wang, Top quark pair plus large missing energy at the LHC. JHEP 0905, 117 (2009). arXiv:0803.3820

    Article  ADS  Google Scholar 

  10. V. Barger, T. Han, D.G. Walker, Top quark pairs at high invariant mass: a model-independent discriminator of new physics at the LHC. Phys. Rev. Lett. 100, 031801 (2008). arXiv:hep-ph/0612016

  11. J. Andrea, B. Fuks, F. Maltoni, Monotops at the LHC. Phys. Rev. D84, 074025 (2011). arXiv:1106.6199

  12. J.F. Kamenik, J. Zupan, Discovering dark matter through flavor violation at the LHC. Phys. Rev. D84, 111502 (2011). arXiv:1107.0623

  13. Z. Dong, G. Durieux, J.-M. Gerard, T. Han, F. Maltoni, Baryon number violation at the LHC: the top option. Phys. Rev. D85, 016006 (2012). arXiv:1107.3805

  14. R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea et al., R-parity violating supersymmetry. Phys. Rept. 420, 1–202 (2005). arXiv:hep-ph/0406039

    Google Scholar 

  15. S.M. Barr, A new symmetry breaking pattern for SO(10) and proton decay. Phys. Lett. B 112, 219 (1982)

    Article  ADS  Google Scholar 

  16. I. Boucheneb, G. Cacciapaglia, A. Deandrea, B. Fuks, Revisiting monotop production at the LHC. JHEP 1501, 017 (2015). arXiv:1407.7529

    Article  ADS  Google Scholar 

  17. R. Allahverdi, M. Dalchenko, B. Dutta, Y. Gao, T. Kamon, Distinguishing standard model extensions using monotop chirality at the LHC. arXiv:1507.02271

  18. A. Aktas et al., H1 Collaboration, Search for squark production in R parity violating supersymmetry at HERA. Eur. Phys. J. C 36, 425–440 (2004). arXiv:hep-ex/0403027

  19. S. Chekanov et al., ZEUS Collaboration, Search for stop production in R-parity-violating supersymmetry at HERA. Eur. Phys. J. C 50, 269–281 (2007). arXiv:hep-ex/0611018

  20. S. Chakrabarti, M. Guchait, N.K. Mondal, Constraining top squark in R parity violating SUSY model using existing Tevatron data. Phys. Rev. D 68, 015005 (2003). arXiv:hep-ph/0301248

  21. M. Ciuchini, V. Lubicz, L. Conti, A. Vladikas, A. Donini, et al., Delta M(K) and epsilon(K) in SUSY at the next-to-leading order. JHEP 9810, 008 (1998). arXiv:hep-ph/9808328. Erratum added online, Mar/29/2000

  22. S. Herrlich, U. Nierste, Indirect CP violation in the neutral kaon system beyond leading logarithms. Phys. Rev. D 52, 6505–6518 (1995). arXiv:hep-ph/9507262

    Google Scholar 

  23. A.J. Buras, Weak Hamiltonian, CP violation and rare decays. arXiv:hep-ph/9806471

  24. A.J. Buras, M. Jamin, P.H. Weisz, Leading and next-to-leading QCD corrections to epsilon parameter and B0—anti-B0 mixing in the presence of a heavy top quark. Nucl. Phys. B 347, 491–536 (1990)

    Article  ADS  Google Scholar 

  25. S. Herrlich, U. Nierste, Enhancement of the K(L) \(-\) K(S) mass difference by short distance QCD corrections beyond leading logarithms. Nucl. Phys. B 419, 292–322 (1994). arXiv:hep-ph/9310311

  26. J. Urban, F. Krauss, U. Jentschura, G. Soff, Next-to-leading order QCD corrections for the B0 anti-B0 mixing with an extended Higgs sector. Nucl. Phys. B 523, 40–58 (1998). arXiv:hep-ph/9710245

  27. B. de Carlos, P.L. White, R-parity violation and quark flavour violation. Phys. Rev. D 55, 4222–4239 (1997). arXiv:hep-ph/9609443

    Google Scholar 

  28. P. Slavich, Constraints on R-parity violating stop couplings from flavor physics. Nucl. Phys. B 595, 33–43 (2001). arXiv:hep-ph/0008270

    Google Scholar 

  29. K. Nakamura et al., Particle Data Group Collaboration, Review of particle physics. J. Phys. G G37, 075021 (2010)

    Google Scholar 

  30. G. Bhattacharyya, D. Choudhury, K. Sridhar, New LEP bounds on B violating scalar couplings: R-parity violating supersymmetry or diquarks. Phys. Lett. B 355, 193–198 (1995). arXiv:hep-ph/9504314

    Google Scholar 

  31. V. Khachatryan et al., CMS Collaboration, Search for dijet resonances in 7 TeV pp collisions at CMS. Phys. Rev. Lett. 105, 211801 (2010). arXiv:1010.0203

  32. G. Aad et al., ATLAS Collaboration, Search for New Particles in Two-Jet final states in 7 TeV Proton-Proton collisions with the ATLAS detector at the LHC. Phys. Rev. Lett. 105, 161801 (2010). arXiv:1008.2461

  33. G. Aad et al., ATLAS Collaboration, Search for new physics in dijet mass and angular distributions in pp collisions at \(\sqrt{s}= 7\) TeV measured with the ATLAS detector. New J. Phys. 13 053044 (2011). arXiv:1103.3864

  34. S. Chatrchyan et al., CMS Collaboration, Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS. Phys. Lett. B704, 123–142 (2013). arXiv:1107.4771

  35. G. Aad et al., ATLAS Collaboration, Search for new physics in the dijet mass distribution using 1 fb\(^{-1}\) TeV collected by the ATLAS detector. Phys. Lett. B708, 37–54 (2013). arXiv:1108.6311

  36. V. Khachatryan et al., CMS Collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \(\sqrt{s} = 8\) TeV. Phys. Rev. D 91(5), 052009 (2015). arXiv:1501.04198

  37. G. Aad et al., ATLAS Collaboration, Search for new phenomena in the dijet mass distribution using \(p-p\) with the ATLAS detector. Phys. Rev. D 91(5), 052007 (2015). arXiv:1407.1376

  38. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. JHEP 06, 128 (2011). arXiv:1106.0522

    Article  ADS  MATH  Google Scholar 

  39. N.D. Christensen, C. Duhr, FeynRules—Feynman rules made easy. Comput. Phys. Commun. 180, 1614–1641 (2009). arXiv:0806.4194

    Article  ADS  Google Scholar 

  40. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). arXiv:hep-ph/0201195

    Google Scholar 

  41. G. Belanger, F. Boudjema, A. Cottrant, A. Pukhov, S. Rosier-Lees, Lower limit on the neutralino mass in the general MSSM. JHEP 0403, 012 (2004). arXiv:hep-ph/0310037

    Google Scholar 

  42. J. Wang, C.S. Li, D.Y. Shao, H. Zhang, Search for the signal of monotop production at the early LHC. Phys. Rev. D 86, 034008 (2012). arXiv:1109.5963

    Article  ADS  Google Scholar 

  43. G. Aad et al., ATLAS Collaboration, Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS. Phys. Lett. B 707, 478–496 (2012). arXiv:1109.2242

  44. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP 0307, 001 (2003). arXiv:hep-ph/0206293

    Google Scholar 

  45. T. Sjostrand, S. Mrenna, P.Z. Skands, A. Brief, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008). arXiv:0710.3820

    Article  ADS  MATH  Google Scholar 

  46. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006). arXiv:hep-ph/0603175

    Google Scholar 

  47. G. Aad et al., The ATLAS Collaboration, Expected performance of the ATLAS experiment—detector, trigger and physics. arXiv:0901.0512

  48. G. Aad et al., ATLAS Collaboration, Search for invisible particles produced in association with single-top-quarks in proton-proton collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. Eur. Phys. J. C 75(2), 79 (2015). arXiv:1410.5404

  49. S. Chatrchyan et al., CMS Collaboration, Search for flavor-changing neutral currents in top-quark decays \(t \rightarrow Zq\) Tev. Phys. Rev. Lett. 112(17), 171802 (2014). arXiv:1312.4194

  50. J.-L. Agram, J. Andrea, M. Buttignol, E. Conte, B. Fuks, Monotop phenomenology at the large hadron collider. Phys. Rev. D 89(1), 014028 (2014). arXiv:1311.6478

  51. V. Khachatryan et al., CMS Collaboration, Search for monotop signatures in Proton-Proton collisions at \(\sqrt{s} = 8\) TeV. Phys. Rev. Lett. 114(10), 101801 (2015). arXiv:1410.1149

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, J. (2016). Search for the Signal of Monotop Production at the Early LHC. In: QCD Higher-Order Effects and Search for New Physics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48673-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48673-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48671-9

  • Online ISBN: 978-3-662-48673-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics