Skip to main content

Introduction to the Standard Model of Particle Physics

  • Chapter
  • First Online:
QCD Higher-Order Effects and Search for New Physics

Part of the book series: Springer Theses ((Springer Theses))

  • 498 Accesses

Abstract

The Standard Model (SM) of particle physics is a gauge field theory based on the gauge group \(SU(3)_C \otimes SU(2)_L \otimes U(1)_Y\) that describes the fundamental electromagnetic, weak and strong interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We take the first generation as an example and assume that the Cabibbo-Kobayashi-Maskawa matrix is diagonal.

  2. 2.

    The other parts of the SM should be changed correspondingly.

References

  1. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  2. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  ADS  Google Scholar 

  5. T.W.B. Kibble, Symmetry breaking in nonAbelian gauge theories. Phys. Rev. 155, 1554–1561 (1967)

    Article  ADS  Google Scholar 

  6. G. Aad et al., ATLAS Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214

  7. S. Chatrchyan et al., CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235

  8. S. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)

    Article  Google Scholar 

  9. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)

    Article  ADS  Google Scholar 

  10. A. Salam, Weak and electromagnetic interactions. Conf. Proc. C680519, 367–377 (1968)

    Google Scholar 

  11. B.W. Lee, C. Quigg, H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass. Phys. Rev. D 16, 1519 (1977)

    Article  ADS  Google Scholar 

  12. R. Barate et al., LEP Working Group for Higgs boson searches, ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, Search for the standard model Higgs boson at LEP. Phys. Lett. B 565 (2003) 61–75. arXiv:hep-ex/0306033

  13. TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF Collaboration, D0 Collaboration, Combined CDF and D0 search for standard model Higgs boson production with up to 10.0 \({fb}^{-1}\) of Data. arXiv:1203.3774

  14. LEP Electroweak Working Group Collaboration, http://lepewwg.web.cern.ch/LEPEWWG/

  15. M. Sher, Electroweak Higgs potentials and vacuum stability. Phys. Rept. 179, 273–418 (1989)

    Article  ADS  Google Scholar 

  16. T. Hambye, K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited. Phys. Rev. D 55, 7255–7262 (1997). arXiv:hep-ph/9610272

    Google Scholar 

  17. J. Ellis, J. Espinosa, G. Giudice, A. Hoecker, A. Riotto, The probable fate of the standard model. Phys. Lett. B 679, 369–375 (2009). arXiv:0906.0954

    Article  ADS  Google Scholar 

  18. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice et al., Higgs mass and vacuum stability in the standard model at NNLO. JHEP 1208, 098 (2012). arXiv:1205.6497

    Article  ADS  Google Scholar 

  19. G. Aad et al., ATLAS, CMS Collaboration, Combined measurement of the Higgs boson mass in \(pp\) and 8 TeV with the ATLAS and CMS experiments. Phys. Rev. Lett. 114, 191803 (2015). arXiv:1503.07589

  20. L. Landau, On the angular momentum of a two-photon system. Dokl. Akad. Nauk Ser. Fiz. 60, 207–209 (1948)

    Google Scholar 

  21. C.-N. Yang, Selection rules for the dematerialization of a particle into two photons. Phys. Rev. 77, 242–245 (1950)

    Article  ADS  MATH  Google Scholar 

  22. G. Aad et al., ATLAS Collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data. Phys. Lett. B 726, 120–144 (2013). arXiv:1307.1432

  23. S. Chatrchyan et al., CMS Collaboration, Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs. Phys. Rev. Lett. 110, no. 8 081803 (2013). arXiv:1212.6639

  24. T. Corbett, O.J.P. Eboli, D. Goncalves, J. Gonzalez-Fraile, T. Plehn et al., The Higgs legacy of the LHC run I. JHEP 1508, 156 (2015). arXiv:1505.05516

  25. K. Olive et al., Particle Data Group Collaboration, Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, J. (2016). Introduction to the Standard Model of Particle Physics. In: QCD Higher-Order Effects and Search for New Physics. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48673-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48673-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48671-9

  • Online ISBN: 978-3-662-48673-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics