Abstract
In the synchronous c-counting problem, we are given a synchronous system of n nodes, where up to f of the nodes may be Byzantine, that is, have arbitrary faulty behaviour. The task is to have all of the correct nodes count modulo c in unison in a self-stabilising manner: regardless of the initial state of the system and the faulty nodes’ behavior, eventually rounds are consistently labelled by a counter modulo c at all correct nodes.
We provide a deterministic solution with resilience \(f<n/3\) that stabilises in O(f) rounds and every correct node broadcasts \(O(\log ^2 f)\) bits per round. We build and improve on a recent result offering stabilisation time O(f) and communication complexity \(O(\log ^2 f /\log \log f)\) but with sub-optimal resilience \(f = n^{1-o(1)}\) (PODC 2015). Our new algorithm has optimal resilience, asymptotically optimal stabilisation time, and low communication complexity. Finally, we modify the algorithm to guarantee that after stabilisation very little communication occurs. In particular, for optimal resilience and polynomial counter size \(c=n^{O(1)}\), the algorithm broadcasts only O(1) bits per node every \(\Theta (n)\) rounds without affecting the other properties of the algorithm; communication-wise this is asymptotically optimal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing Byzantine tolerant digital clock synchronization. In: Proc. 27th Annual ACM Symposium on Principles of Distributed Computing (PODC 2008), pp. 385–394. ACM Press (2008). doi:10.1145/1400751.1400802
Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus. In: Proc. 30th Annual Symposium on Foundations of Computer Science (FOCS 1989). pp. 410–415. IEEE (1989). doi:10.1109/SFCS.1989.63511
Dolev, D., Heljanko, K., Järvisalo, M., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J., Wieringa, S.: Synchronous counting and computational algorithm design (2015). http://arxiv.org/abs/1304.5719v2
Dolev, D., Hoch, E.N.: On Self-stabilizing synchronous actions despite Byzantine attacks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 193–207. Springer, Heidelberg (2007)
Dolev, D., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J.: Synchronous counting and computational algorithm design. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 237–250. Springer, Heidelberg (2013)
Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement. Journal of the ACM 32(1), 191–204 (1985). doi:10.1145/2455.214112
Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)
Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of Byzantine faults. Journal of the ACM 51(5), 780–799 (2004). doi:10.1145/1017460.1017463
Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Information Processing Letters 14(4), 183–186 (1982). doi:10.1016/0020-0190(82)90033-3
Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing Byzantine digital clock synchronization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 350–362. Springer, Heidelberg (2006)
Lenzen, C., Rybicki, J.: Efficient counting with optimal resilience (2015). http://arxiv.org/abs/1508.02535
Lenzen, C., Rybicki, J., Suomela, J.: Towards optimal synchronous counting. In: Proc. 34th Annual ACM Symposium on Principles of Distributed Computing (PODC 2015), pp. 441–450. ACM Press (2015). doi:10.1145/2767386.2767423
Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM 27(2), 228–234 (1980). doi:10.1145/322186.322188
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lenzen, C., Rybicki, J. (2015). Efficient Counting with Optimal Resilience. In: Moses, Y. (eds) Distributed Computing. DISC 2015. Lecture Notes in Computer Science(), vol 9363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48653-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-662-48653-5_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48652-8
Online ISBN: 978-3-662-48653-5
eBook Packages: Computer ScienceComputer Science (R0)