Skip to main content

Efficient Counting with Optimal Resilience

  • Conference paper
  • First Online:
Distributed Computing (DISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9363))

Included in the following conference series:

Abstract

In the synchronous c-counting problem, we are given a synchronous system of n nodes, where up to f of the nodes may be Byzantine, that is, have arbitrary faulty behaviour. The task is to have all of the correct nodes count modulo c in unison in a self-stabilising manner: regardless of the initial state of the system and the faulty nodes’ behavior, eventually rounds are consistently labelled by a counter modulo c at all correct nodes.

We provide a deterministic solution with resilience \(f<n/3\) that stabilises in O(f) rounds and every correct node broadcasts \(O(\log ^2 f)\) bits per round. We build and improve on a recent result offering stabilisation time O(f) and communication complexity \(O(\log ^2 f /\log \log f)\) but with sub-optimal resilience \(f = n^{1-o(1)}\) (PODC 2015). Our new algorithm has optimal resilience, asymptotically optimal stabilisation time, and low communication complexity. Finally, we modify the algorithm to guarantee that after stabilisation very little communication occurs. In particular, for optimal resilience and polynomial counter size \(c=n^{O(1)}\), the algorithm broadcasts only O(1) bits per node every \(\Theta (n)\) rounds without affecting the other properties of the algorithm; communication-wise this is asymptotically optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing Byzantine tolerant digital clock synchronization. In: Proc. 27th Annual ACM Symposium on Principles of Distributed Computing (PODC 2008), pp. 385–394. ACM Press (2008). doi:10.1145/1400751.1400802

  2. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus. In: Proc. 30th Annual Symposium on Foundations of Computer Science (FOCS 1989). pp. 410–415. IEEE (1989). doi:10.1109/SFCS.1989.63511

  3. Dolev, D., Heljanko, K., Järvisalo, M., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J., Wieringa, S.: Synchronous counting and computational algorithm design (2015). http://arxiv.org/abs/1304.5719v2

  4. Dolev, D., Hoch, E.N.: On Self-stabilizing synchronous actions despite Byzantine attacks. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 193–207. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Dolev, D., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J.: Synchronous counting and computational algorithm design. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 237–250. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement. Journal of the ACM 32(1), 191–204 (1985). doi:10.1145/2455.214112

    Article  MATH  MathSciNet  Google Scholar 

  7. Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of Byzantine faults. Journal of the ACM 51(5), 780–799 (2004). doi:10.1145/1017460.1017463

    Article  MATH  MathSciNet  Google Scholar 

  9. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Information Processing Letters 14(4), 183–186 (1982). doi:10.1016/0020-0190(82)90033-3

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoch, E.N., Dolev, D., Daliot, A.: Self-stabilizing Byzantine digital clock synchronization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 350–362. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Lenzen, C., Rybicki, J.: Efficient counting with optimal resilience (2015). http://arxiv.org/abs/1508.02535

  12. Lenzen, C., Rybicki, J., Suomela, J.: Towards optimal synchronous counting. In: Proc. 34th Annual ACM Symposium on Principles of Distributed Computing (PODC 2015), pp. 441–450. ACM Press (2015). doi:10.1145/2767386.2767423

  13. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM 27(2), 228–234 (1980). doi:10.1145/322186.322188

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Rybicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lenzen, C., Rybicki, J. (2015). Efficient Counting with Optimal Resilience. In: Moses, Y. (eds) Distributed Computing. DISC 2015. Lecture Notes in Computer Science(), vol 9363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48653-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48653-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48652-8

  • Online ISBN: 978-3-662-48653-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics