Skip to main content

Modular Verification of Concurrency-Aware Linearizability

  • Conference paper
  • First Online:
Distributed Computing (DISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9363))

Included in the following conference series:

Abstract

Linearizability is the de facto correctness condition for concurrent objects. Informally, linearizable objects provide the illusion that each operation takes effect instantaneously at a unique point in time between its invocation and response. Hence, by design, linearizability cannot describe behaviors of concurrency-aware concurrent objects (CA-objects), objects in which several overlapping operations “seem to take effect simultaneously”. In this paper, we introduce concurrency-aware linearizability (CAL), a generalized notion of linearizability which allows to formally describe the behavior of CA-objects. Based on CAL, we develop a thread- and procedure-modular verification technique for reasoning about CA-objects and their clients. Using our new technique, we present the first proof of linearizability of the elimination stack of Hendler et al. [10] in which the stack’s elimination subcomponent, which is a general-purpose CA-object, is specified and verified independently of its particular usage by the stack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afek, Y., Hakimi, M., Morrison, A.: Fast and scalable rendezvousing. Distributed Computing 26(4), 243–269 (2013)

    Article  MATH  Google Scholar 

  2. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Anderson, J., Toueg, S. (eds.) PODC (1993)

    Google Scholar 

  3. Castaneda, A., Rajsbaum, S., Raynal, M.: Specifying concurrent problems: beyond linearizability and up to tasks. In: DISC (2015)

    Google Scholar 

  4. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231. Springer, Heidelberg (2014)

    Google Scholar 

  5. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Concurrent abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 504–528. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Drăgoi, C., Gupta, A., Henzinger, T.A.: Automatic linearizability proofs of concurrent objects with cooperating updates. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 174–190. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Filipovic, I., O’Hearn, P., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. Theor. Comput. Sci. 411(51–52) (2010)

    Google Scholar 

  8. Hemed, N., Rinetzky, N.: Brief announcement: concurrency-aware linearizability. In: Halldórsson, M.M., Dolev, S. (eds.) PODC, pp. 209–211. ACM (2014)

    Google Scholar 

  9. Hemed, N., Rinetzky, N., Vafeiadis, V.: Modular verification of concurrency-aware linearizability (2015). http://www.cs.tau.ac.il/nirh/disc15-ext.pdf

  10. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In: SPAA (2004)

    Google Scholar 

  11. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Scalable flat-combining based synchronous queues. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 79–93. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

    Article  Google Scholar 

  13. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)

    Article  MATH  Google Scholar 

  14. Scherer III, W.N., Scott, M.L.: Nonblocking concurrent data structures with condition synchronization. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 174–187. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress (1983)

    Google Scholar 

  16. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer, D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning. In: POPL (2015)

    Google Scholar 

  17. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement scalable and lock-free fifo queues. In: SPAA, pp. 253–262. ACM (2005)

    Google Scholar 

  18. Neiger, G.: Set-linearizability. In: Anderson, J.H., Peleg, D., Borowsky, E. (eds.) PODC 1994, pp. 396–396. ACM (1994)

    Google Scholar 

  19. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, p. 1. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique for linearizability of concurrent data structures. ACM Trans. Comput. Logic 15(4) (2014)

    Google Scholar 

  21. Scherer III, W.N., Lea, D., Scott, M.L.: A scalable elimination-based exchange channel. SCOOL (2005)

    Google Scholar 

  22. Scherer III, W.N., Lea, D., Scott, M.L.: Scalable synchronous queues. In: Torrellas, J., Chatterjee, S. (eds.) PPoPP 2006, pp. 147–156. ACM (2006)

    Google Scholar 

  23. Sergey, I., Nanevski, A., Banerjee, A.: Specifying and verifying concurrent algorithms with histories and subjectivity. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 333–358. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  24. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks. Theory Comput. Syst. 30(6), 645–670 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  26. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, University of Cambridge (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Rinetzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hemed, N., Rinetzky, N., Vafeiadis, V. (2015). Modular Verification of Concurrency-Aware Linearizability. In: Moses, Y. (eds) Distributed Computing. DISC 2015. Lecture Notes in Computer Science(), vol 9363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48653-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48653-5_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48652-8

  • Online ISBN: 978-3-662-48653-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics