Skip to main content

A Cost-Efficient Tele-rehabilitation Device for Training Distal Upper Limb Functions After Stroke

  • 640 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 515)

Abstract

Robotic rehabilitation devices offer prospects in improving the therapy outcome in stroke patients. In particular the combination with tele-rehabilitation functionality may be beneficial to reduce cost, which is especially required for home-based rehabilitation. In this paper a device is presented that allows for exercising supination/pronation, dorsiflexion, and finger training. Its communication architecture follows a modular design approach. The Qt-based graphical UI can be executed on different operating systems and devices including the cost-effective Rasperry Pi single-board computer. Tele-rehabilitation functionality is implemented based on SSL-encrypted RESTful web services following a three-tier architecture. Cost is reduced by omitting expensive sensors. A torque sensor is replaced with current-based torque sensing, used for progress measurement and interactive exercises. The evaluation shows accurate results after compensating the static friction, justifying the omission of an additional torque sensor. Torque measurements during passive exercises showed higher and more asymmetric ratings for a stroke patient than for a healthy subject indicating that this measurement may be used as an estimator of spasticity.

Keywords

  • Robotic rehabilitation
  • Tele-rehabilitation
  • Stroke
  • Home health care
  • Distal upper limb functions
  • Motor control

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allington, J., Spencer, S. J., Klein, J., Buell, M., Reinkensmeyer, D. J., Bobrow, J.: Supinator extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1579–1582. IEEE (2011)

    Google Scholar 

  2. Balasubramanian, S., Klein, J., Burdet, E.: Robot-assisted rehabilitation of hand function. Curr. Opin. Neurol. 23(6), 661 (2010)

    CrossRef  Google Scholar 

  3. Brewer, B., Klatzky, R., Matsuoka, Y.: Feedback distortion to overcome learned nonuse: a system overview. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 1613–1616. IEEE (2003)

    Google Scholar 

  4. Brewer, B., Klatzky, R., Matsuoka, Y.: Visual feedback distortion in a robotic environment for hand rehabilitation. Brain Res. Bull. 75(6), 804–813 (2008)

    CrossRef  Google Scholar 

  5. Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., Werner, C.: Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 84(6), 915–920 (2003)

    CrossRef  Google Scholar 

  6. Kolominsky-Rabas, P.L., Heuschmann, P.U., Marschall, D., Emmert, M., Baltzer, N., Neundörfer, B., Schöffski, O., Krobot, K.J., et al.: Lifetime cost of ischemic stroke in germany: results and national projections from a population-based stroke registry the erlangen stroke project. Stroke 37(5), 1179–1183 (2006)

    CrossRef  Google Scholar 

  7. Krebs, H.I., Volpe, B.T., Williams, D., Celestino, J., Charles, S.K., Lynch, D., Hogan, N.: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 327–335 (2007)

    CrossRef  Google Scholar 

  8. Kwakkel, G., Kollen, B.J., Krebs, H.I.: Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair 22(2), 111–121 (2008)

    CrossRef  Google Scholar 

  9. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Toy, A., Leonhardt, S., et al.: A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11(1), 3 (2014)

    CrossRef  Google Scholar 

  10. Matsuoka, Y., Allin, S., Klatzky, R.: The tolerance for visual feedback distortions in a virtual environment. Physiol. Behav. 77(4–5), 651–655 (2002)

    CrossRef  Google Scholar 

  11. Metzger, J.-C., Lambercy, O., Chapuis, D., Gassert, R.: Design and characterization of the ReHapticKnob, a robot for assessment and therapy of hand function. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3074–3080. IEEE (2011)

    Google Scholar 

  12. Nakayama, H., Jørgensen, H.S., Raaschou, H.O., Olsen, T.S.: Recovery of upper extremity function in stroke patients: the Copenhagen stroke study. Age (SD) 74, 11–2 (1994)

    Google Scholar 

  13. Oblak, J., Cikajlo, I., Matjacic, Z.: Universal haptic drive: a robot for arm and wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 293–302 (2010)

    CrossRef  Google Scholar 

  14. Reinkensmeyer, D.J., Emken, J.L., Cramer, S.C.: Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng. 6, 497–525 (2004)

    CrossRef  Google Scholar 

  15. Takahashi, C.D., Der-Yeghiaian, L., Le, V., Motiwala, R.R., Cramer, S.C.: Robot-based hand motor therapy after stroke. Brain 131(2), 425–437 (2008)

    CrossRef  Google Scholar 

  16. Van der Lee, J.H., de Groot, V., Beckerman, H., Wagenaar, R.C., Lankhorst, G.J., Bouter, L.M.: The intra-and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Arch. Phys. Med. Rehabil. 82(1), 14–19 (2001)

    CrossRef  Google Scholar 

  17. Warlow, C., Van Gijn, J., Sandercock, P., Hankey, G., Dennis, M., Bamford, J., Wardlaw, J., Sudlow, C., Rinkel, G., Rothwell, P.: Stroke: practical management (2008)

    Google Scholar 

  18. Weiss, P., Heldmann, M. Gabrecht, A. Schweikard, A., Münte, T. M., Maehle, E.: A low cost tele-rehabilitation device for training of wrist and finger functions after stroke. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2014), pp. 422–425 (2014)

    Google Scholar 

  19. Weiss, P., Heldmann, M., Münte, T., Schweikard, A., Maehle, E.: A rehabilitation system for training based on visual feedback distortion. In: Pons, J.L., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation, pp. 297–302. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weiss, P., Gabrecht, A., Heldmann, M., Schweikard, A., Maehle, E. (2015). A Cost-Efficient Tele-rehabilitation Device for Training Distal Upper Limb Functions After Stroke. In: Fardoun, H., R. Penichet, V., Alghazzawi, D. (eds) ICTs for Improving Patients Rehabilitation Research Techniques. REHAB 2014. Communications in Computer and Information Science, vol 515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48645-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48645-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48644-3

  • Online ISBN: 978-3-662-48645-0

  • eBook Packages: Computer ScienceComputer Science (R0)