Skip to main content

Design Principles for Hapto-Virtual Rehabilitation Environments: Effects on Effectiveness of Fine Motor Hand Therapy

  • Conference paper
  • First Online:
Book cover ICTs for Improving Patients Rehabilitation Research Techniques (REHAB 2014)

Abstract

We propose a set of principles to facilitate the design of haptic feedback virtual environments, which is expected to contribute to the effectiveness of the fine motor hand therapy. Firstly, we conducted a contextual study in a rehabilitation center to identify preliminary design elements using grounded theory. Based on these results, we defined a set of principles aiming to aid in the design of haptic feedback virtual environments to favour therapy effectiveness and patient’s safety. Secondly, in order to evaluate the proposed design principles, we developed a haptic feedback virtual environment based on them and conducted a formative evaluation with five patients and three therapists. Preliminary results provided promising evidence, indicating a high perception of usefulness, ease of use and intention of use of the proposed environment and principles. Finally, to validate the impact of the design principles in therapy effectiveness, we carried out a second study with thirty participants, from which fifteen elderly had hand motor impairments. We found no significant differences in task execution time between healthy adults and elders with hand motor impairments. We found significant differences in precision or accuracy of the exercise. We confirmed the importance of key principles to facility the design of hapto-virtual environments that contribute to the effectiveness of the fine motor hand therapy. Further evaluations are needed to validate our results from a clinical viewpoint. We confirmed the importance of key principles to contribute to the effectiveness of the fine motor hand therapy. Further evaluations are needed to validate our results from a clinical viewpoint.

This work was partially funded by the Mexican Council for Science and Technology (CONACYT) under grant 218709 and CONACYT scholarship number 97753 for the first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blender. http://www.blender.org. Accessed 15 Aug 2014

  2. Novint Falcon. http://www.novint.com. Accessed 15 Aug 2014

  3. Unity game engine. http://unity3d.com. Accessed 15 Aug 2014

  4. Alankus, G., Lazar, A., May, M., Kelleher, C.: Towards customizable games for stroke rehabilitation. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems - CHI 2010, pp. 2113–2122, no. 2113 (2010)

    Google Scholar 

  5. Annema, J., Verstraete, M., Abeele, V., Desmet, S., Geerts, D., Leuven, I.: Videogames in therapy: a therapist’s perspective. In: International Conference on Fun and Games, pp. 94–98 (2010)

    Google Scholar 

  6. Boulanger, C., Boulanger, A., de Greef, L., Kearney, A., Sobel, K., Transue, R., Sweedyk, Z., Dietz, P., Bathiche, S.: Stroke rehabilitation with a sensing surface. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems- CHI 2013, pp. 1243–1246. ACM Press (2013)

    Google Scholar 

  7. Burke, J., McNeill, M., Charles, D., Morrow, P., Crosbie, J., McDonough, S.: Optimising engagement for stroke rehabilitation using serious games. Vis. Comput. 25(12), 1085–1099 (2009)

    Article  Google Scholar 

  8. Chen, Y., Lehrer, N., Sundaram, H., Rikakis, T.: Adaptive mixed reality stroke rehabilitation: system architecture and evaluation metrics. In: Proceedings of the First Annual ACM SIGMM Conference on Multimedia Systems, pp. 293–304 (2010)

    Google Scholar 

  9. Corbin, J., Strauss, A.: Grounded theory research: procedures, canons, and evaluative criteria. Qual. Sociol. 13(1), 3–21 (1990)

    Article  Google Scholar 

  10. Davis, F.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319–340 (1989)

    Article  Google Scholar 

  11. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction, 3rd edn. Pearson/Prentice-Hall, Harlow (2004)

    Google Scholar 

  12. Dovat, L., Lambercy, O., Ruffieux, Y., Chapuis, D., Gassert, R., Bleuler, H., Teo, C., Burdet, E.: A haptic knob for rehabilitation of stroke patients. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 977–982, October 2006

    Google Scholar 

  13. Flores, E., Tobon, G., Cavallaro, E., Cavallaro, F., Perry, J., Keller, T.: Improving patient motivation in game development for motor deficit rehabilitation. In: International Conference on Advances in Computer, pp. 381–384 (2008)

    Google Scholar 

  14. Henderson, A., Korner-Bitensky, N., Levin, M.: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 14(2), 52–61 (2007)

    Article  Google Scholar 

  15. Holden, M., Dyar, T.: Virtual environment training-a new tool for neurorehabilitation. Neurol. Rep. 26(2), 62–71 (2002)

    Article  Google Scholar 

  16. Ines, D., Abdelkader, G.: Mixed reality serious games: the therapist perspective. In: International Conference on Serious Games and Applications for Health, pp. 1–10, no. V (2011)

    Google Scholar 

  17. Jones, C.: Design Methods. Wiley, New York (1982)

    Google Scholar 

  18. Jung, Y., Yeh, S., Stewart, J.: Tailoring virtual reality technology for stroke rehabilitation: a human factors design. In: Computer Human Interaction, pp. 929–934 (2006)

    Google Scholar 

  19. Kaber, D., Zhang, T.: Human factors in virtual reality system design for mobility and haptic task performance. Rev. Hum. Factors Ergon. 7(1), 323–366 (2011)

    Article  Google Scholar 

  20. Kayyalil, R., Shirmohammadil, S., Saddik, A., Lemaire, E.: Daily-life exercises for haptic motor rehabilitation. In: IEEE International Workshop on Haptic Audio Visual Environments and their Applications, pp. 12–14, no. October (2007)

    Google Scholar 

  21. Kleim, J., Jones, T.: Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. JSLHR 51(1), S225–S239 (2008)

    Article  Google Scholar 

  22. Lewis, G., Woods, C., Rosie, J., McPherson, K.: Virtual reality games for rehabilitation: perspectives from the users and new directions. In: 2011 International Conference on Virtual Rehabilitation, pp. 1–2. IEEE, June 2011

    Google Scholar 

  23. Li, Y., Kaber, D., Tupler, L., Lee, Y.: Haptic-based virtual environment design and modeling of motor skill assessment for brain injury patients rehabilitation. Comput.-Aided Des. Appl. 8(2), 149–162 (2011)

    Google Scholar 

  24. Mali, U., Goljar, N., Munih, M.: Application of haptic interface for finger exercise. IEEE Trans. Neural Syst. Rehabil. Eng. 14(3), 352–360 (2006)

    Article  Google Scholar 

  25. McLaughlin, M., Rizzo, A., Jung, Y., Peng, W., Yeh, S., Zhu, W., USC/UT Consortium for Interdisciplinary Research: Haptics-enhanced virtual environments for stroke rehabilitation. In: Proceeding of IPSI (2005)

    Google Scholar 

  26. Moore, M., Wilhelms, J.: Collision detection and response for computer animation. Comput. Graph. 22(4), 289–298 (1988)

    Article  Google Scholar 

  27. Morán, A.L., Orihuela-Espina, F., Meza-Kubo, V., Grimaldo, A.I., Ramírez-Fernández, C., García-Canseco, E., Oropeza-Salas, J.M., Sucar, L.E.: Borrowing a virtual rehabilitation tool for the physical activation and cognitive stimulation of elders. In: Collazos, C., Liborio, A., Rusu, C. (eds.) CLIHC 2013. LNCS, vol. 8278, pp. 95–102. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Mullins, J., Mawson, C., Nahavandi, S.: Haptic handwriting aid for training and rehabilitation. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2690–2694. IEEE (2005)

    Google Scholar 

  29. Nielsen, J.: Usability Enginnering. Academic Press, Inc., Boston (1994)

    Google Scholar 

  30. Ramírez-Fernández, C., García-Canseco, E., Morán, A.L.: Towards a set of design principles for hapto-virtual rehabilitation environments: preliminary results in fine motor therapy. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth 2014). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Oldenburg, 20 May 2014. http://dx.doi.org/10.4108/icst.pervasivehealth.2014.255359

  31. Rogers, Y., Sharp, H., Preece, J.: Interaction Design: Beyond Human-Computer Interaction. Wiley, New York (2011)

    Google Scholar 

  32. Saddik, A.E.: Computer haptics (Chap. 5). In: Saddik, A.E., Orozco, M., Eid, M., Cha, J. (eds.) Haptics Technologies. Springer Series on Touch and Haptic Systems, pp. 105–143. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Saini, S., Rohaya, D., Rambli, A., Sulaiman, S., Zakaria, M.N., Rohkmah, S., Shukri, M., Iskandar, B.S.: A low-cost game framework for home-based stroke rehabilitation system. In: 2012 International Conference on Computer & Information Science (ICCIS), pp. 55–60 (2012)

    Google Scholar 

  34. Schultheis, M., Rizzo, A.: The application of virtual reality technology in rehabilitation. Rehabil. Psychol. 46(3), 296–311 (2001)

    Article  Google Scholar 

  35. Seo, K., Kim, J., Lee, J., Jang, S., Ryu, H.: Serious games for stroke patients: attending to clinical staff’s voices. In: The 5th International Congress of International Association of Societies of Design Research, pp. 1–11 (2013)

    Google Scholar 

  36. Sucar, L., Orihuela-Espina, F., Velazquez, R., Reinkensmeyer, D., Leder, R., Hernandez-Franco, J.: Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform. IEEE Trans. Neural Syst. Rehabil. Eng. 22(3), 634–643 (2014)

    Article  Google Scholar 

  37. Sveistrup, H.: Motor rehabilitation using virtual reality. J. Neuroeng. Rehabil. 1(1), 1–8 (2004)

    Article  Google Scholar 

  38. Timmermans, A., Seelen, H., Willmann, R., Kingma, H.: Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J. Neuroeng. Rehabil. 6(1), 1–18 (2009)

    Article  Google Scholar 

  39. Woldag, H., Hummelsheim, H.: Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. J. Neurol. 249(5), 518–528 (2002)

    Article  Google Scholar 

  40. Xu, Z., Yu, H., Yan, S.: Motor rehabilitation training after stroke using haptic handwriting and games. In: Proceedings of the 4th International Convention on Rehabilitation Engineering & Assistive Technology (2010)

    Google Scholar 

  41. Zar, J.H.: Biostatistical Analysis. Prentice Hall, New Jersey (2010)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the specialists and patients from “Centro Integral de Rehabilitación”, and the elderly from “Casa Hogar de Anciano” and “Casa del Abuelo” in Ensenada, Baja California, México, for their valuable support and participation in this research work. We are also grateful to undergraduate students who have participated in the development of the haptic maze application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloísa García-Canseco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramírez-Fernández, C., García-Canseco, E., Morán, A.L., Orihuela-Espina, F. (2015). Design Principles for Hapto-Virtual Rehabilitation Environments: Effects on Effectiveness of Fine Motor Hand Therapy. In: Fardoun, H., R. Penichet, V., Alghazzawi, D. (eds) ICTs for Improving Patients Rehabilitation Research Techniques. REHAB 2014. Communications in Computer and Information Science, vol 515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48645-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48645-0_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48644-3

  • Online ISBN: 978-3-662-48645-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics