Central Venous Access

  • Gregor M. WalkerEmail author
  • Constantinos A. Hajivassiliou


Approximately 200,000 central venous lines (CVLs) are inserted in the UK annually and a significant proportion are indwelling lines inserted for the administration of chemotherapy or to serve the other needs of patients with oncological problems.

The advances in cancer care have been paralleled by similar advances in central line design and construction.

The evolution of materials used to construct these catheters has also been revolutionized by the replacement of thrombogenic, relatively noncompliant, and variably antigenic rubber, nylon, polyvinyl, or polyurethane catheters with those made of silicone, associated with a concomitant decrease in the complication rate and duration of indwelling catheter time.

Multiple lumen catheters have been designed for use in patients requiring long-term simultaneous administration of two or more parenteral solutions, e.g., chemotherapy, antibiotics, antifungal agents, and parenteral nutrition. Since the introduction of intravenous therapy teams, there have been dramatic improvements in catheter and catheter site care, bringing about a reduction in complications


Central Venous Access Central Lines Chemotherapeutic Agents Resuscitation Intravenous Alimentation Blood Sampling Antibiotics Blood Transfusion Blood Products Hemodialysis Intravenous Access Catheterization Subclavian Vein Femoral Vein Jugular Vein Implantable Devices 


  1. 1.
    Dudrick SJ, Wilmore DW, Vars HM, Rhoads JE. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery. 1968;64(1):134–42.PubMedGoogle Scholar
  2. 2.
    Broviac JW, Cole JJ, Scribner BH. A silicone rubber atrial catheter for prolonged parenteral alimentation. Surg Gynecol Obstet. 1973;136(4):602–6.PubMedGoogle Scholar
  3. 3.
    Hickman RO, Buckner CD, Clift RA, Sanders JE, Stewart P, Th omas ED. A modified right atrial catheter for access to the venous system in marrow transplant recipients. Surg Gynecol Obstet. 1979;148(6):871–5.PubMedGoogle Scholar
  4. 4.
    Johnson A, Oppenheim BA. Vascular catheterrelated sepsis: diagnosis and prevention. J Hosp Infect. 1992;20(2):67–78.CrossRefPubMedGoogle Scholar
  5. 5.
    De Backer BA, Vanhulle A, Otten J, Deconinck P. Totally implantable central venous access devices in pediatric oncology-our experience in 46 patients. Eur J Pediatr Surg. 1993;3(2):101–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Bland KI, Woodcock T. Totally implantable venous access system for cyclic administration of cytotoxic chemotherapy. Am J Surg. 1984;147(6):815–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Sala A, Pencharz P, Barr RD. Children, cancer, and nutrition-a dynamic triangle in review. Cancer. 2004;100(4):677–87.CrossRefPubMedGoogle Scholar
  8. 8.
    Rossi R, Kleta R, Ehrich JH. Renal involvement in children with malignancies. Pediatr Nephrol. 1999;13(2):153–62.CrossRefPubMedGoogle Scholar
  9. 9.
    Maki DG, Ringer M, Alvarado CJ. Prospective randomized trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet. 1991;338(8763):339–43.CrossRefPubMedGoogle Scholar
  10. 10.
    Barsan WG, Hedges JR, Nishiyama H, Lukes ST. Differences in drug delivery with peripheral and central venous injections: normal perfusion. Am J Emerg Med. 1986;4(1):1–3.CrossRefPubMedGoogle Scholar
  11. 11.
    Khawaja HT, Williams JD, Weaver PC. Transdermal glyceryl trinitrate to allow peripheral total parenteral nutrition: a double-blind placebo controlled feasibility study. J R Soc Med. 1991;84(2):69–72.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Thiagarajan RR, Ramamoorthy C, Gettmann T, Bratton SL. Survey of the use of peripherally inserted central venous catheters in children. Pediatrics. 1997;99(2):E4.CrossRefPubMedGoogle Scholar
  13. 13.
    Racadio JM, Doellman DA, Johnson ND, Bean Jacobs BR. Pediatric peripherally inserted JA, central catheters: complication rates related to catheter tip location. Pediatrics. 2001;107(2):E28.CrossRefPubMedGoogle Scholar
  14. 14.
    Pezzati M, Filippi L, Chiti G, Dani C, Rossi S, Bertini G, Rubaltelli FF. Central venous catheters and cardiac tamponade in preterm infants. Intensive Care Med. 2004;30(12):2253–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Nowlen TT, Rosenthal GL, Johnson GL, Tom DJ, Vargo TA. Pericardial effusion and tamponade in infants with central catheters. Pediatrics. 2002;110(1):137–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Angle JF, Matsumoto AH, Skalak TC, O’Brien RF, Hartwell GD, Tegtmeyer CJ. Flow characteristics of peripherally inserted central catheters. J Vasc Interv Radiol. 1997;8(4):569–77.CrossRefPubMedGoogle Scholar
  17. 17.
    Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc. 2006;81(9):1159–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Cortelezzi A, Moia M, Falanga A, Pogliani EM, Agnelli G, Bonizzoni E, Gussoni G, Barbui T, Mannucci PM. Incidence of thrombotic complications in patients with haematological malignancies with central venous catheters: a prospective multicentre study. Br J Haematol. 2005;129(6):811–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Schwarz RE, Coit DG, Groeger JS. Transcutaneously tunnelled central venous lines in cancer patients: an analysis of device related morbidity factors based on prospective data collection. Ann Surg Oncol. 2000;7(6):441–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Heckmann JG, Lang CJ, Kindler K, Huk W, Erbguth FJ, Neundorfer B. Neurologic manifestations of cerebral air embolism as a complication of central venous catheterization. Crit Care Med. 2000;28(5):1621–5S.CrossRefPubMedGoogle Scholar
  21. 21.
    Eisen LA, Narasimhan M, Berger JS, Mayo PH, Rosen MJ, Schneider RF. Mechanical complications of central venous catheters. J Intensive Care Med. 2006;21(1):40–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Waitt C, Waitt P, Pirmohamed M. Intravenous therapy. Postgrad Med J. 2004;80(939):1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ziegler M, Jakobowski D, Hoelzer D, Eichelberger M, Koop CE. Route of pediatric parenteral nutrition: proposed criteria revision. J Pediatr Surg. 1980;15(4):472–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Maki DG, Cobb L, Garman JK, Shapiro JM, Ringer M, Helgerson RB. An attachable silver-impregnated cuff for prevention of infection with central venous catheters: a prospective randomized multicenter trial. Am J Med. 1988;85(3):307–14.CrossRefPubMedGoogle Scholar
  25. 25.
    Wiener ES, McGuire P, Stolar CJ, Rich RH, Albo VC, Ablin AR, Betcher DL, Sitarz AL, Buckley JD, Krailo MD. Th e CCSG prospective study of venous access devices: an analysis of insertions and causes for removal. J Pediatr Surg. 1992;27(2):155–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Delmore JE, Horbelt DV, Jack BL, Roberts DK. Experience with the Groshong long-term central venous catheter. Gynecol Oncol. 1989;34(2):216–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Kirkemo A, Johnston MR. Percutaneous subclavian vein placement of the Hickman catheter. Surgery. 1982;91(3):349–51.PubMedGoogle Scholar
  28. 28.
    Reardon PR, McKinney GP, Craig ES, Reardon MJ. A loop technique for the safe, secure, and convenient fixation of subclavian central venous catheters to the chest wall. Am J Surg. 2003;185(6):536–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Sri PT, Corbally M, Fitzgerald RI. New technique for fixation of Broviac catheters. J Pediatr Surg. 2003;38(1):51–2.CrossRefGoogle Scholar
  30. 30.
    Babu R, Spicer RD. “Cuff-stitch” to prevent inadvertent dislodgement of central venous catheters. Pediatr Surg Int. 2001;17(2–3):245–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Desmond J, Megahed M. Is the central venous pressure reading equally reliable if the central line is inserted via the femoral vein. Emerg Med J. 2003;20(5):467–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Deshpande KS, Hatem C, Ulrich HL, Currie BP, Aldrich TK, Bryan-Brown CW, Kvetan V. The incidence of infectious complications of central venous catheters at the subclavian, internal jugular, and femoral sites in an intensive care unit population. Crit Care Med. 2005;33(1):13–20.CrossRefPubMedGoogle Scholar
  33. 33.
    Grebenik CR, Boyce A, Sinclair ME, Evans RD, Mason DG, Martin B. NICE guidelines for central venous catheterization in children. Is the evidence base sufficient? Br J Anaesth. 2004;92(6):827–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Brooks AJ, Alfredson M, Pettigrew B, Morris DL. Ultrasound-guided insertion of subclavian venous access ports. Ann R Coll Surg Engl. 2005;87(1):25–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Adler A, Yaniv I, Steinberg R, Solter E, Samra Z, Stein J, Levy I. Infectious complications of implantable ports and Hickman catheters in paediatric haematologyoncology patients. J Hosp Infect. 2006;62(3):358–65.CrossRefPubMedGoogle Scholar
  36. 36.
    Goossens GA, Vrebos M, Stas M, De Wever I, Frederickx L. Central vascular access devices in oncology and hematology considered from a different point of view: how do patients experience their vascular access ports? J Infus Nurs. 2005;28(1):61–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Borst CG, de Kruif AT, van Dam FS, de Graaf PW. Totally implantable venous access ports-the patients’ point of view. A quality control study. Cancer Nurs. 1992;15(5):378–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Capdevila JA. Catheter-related infection: an update on diagnosis, treatment, and prevention. Int J Infect Dis. 1998;2(4):230–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Erbay A, Ergonul O, Stoddard GJ, Samore MH. Recurrent catheter-related bloodstream infections: risk factors and outcome. Int J Infect Dis. 2006;10(5):396–400.CrossRefPubMedGoogle Scholar
  40. 40.
    Nahata MC, King DR, Powell DA, Marx SM, Ginn-Pease ME. Management of catheter-related infections in pediatric patients. J Parenter Enteral Nutr. 1988;12(1):58–9.CrossRefGoogle Scholar
  41. 41.
    Somme S, Gedalia U, Caceres M, Hill CB, Liu DC. Wireless replacement of the “lost” central venous line in children. Am Surg. 2001;67(9):817–9.PubMedGoogle Scholar
  42. 42.
    Cyna AM, Hovenden JL, Lehmann A, Rajaseker K, Kalia P. Routine replacement of central venous catheters: telephone survey of intensive care units in mainland Britain. Br Med J. 1998;316(7149):1944–5.CrossRefGoogle Scholar
  43. 43.
    Cook D, Randolph A, Kernerman P, Cupido C, King D, Soukup C, Brun-Buisson C. Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med. 1997;25(8):1417–24.CrossRefPubMedGoogle Scholar
  44. 44.
    Hachem R, Raad I. Prevention and management of long-term catheter related infections in cancer patients. Cancer Invest. 2002;20(7–8):1105–13.CrossRefPubMedGoogle Scholar
  45. 45.
    Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, Berg J, Khardori N, Hanna H, Hachem R, Harris RL, Mayhall G. A comparison of two antimicrobial- impregnated central venous catheters. Catheter Study Group. N Engl J Med. 1999;340(1):1–8.CrossRefPubMedGoogle Scholar
  46. 46.
    O’Grady NP. Applying the science to the prevention of catheter-related infections. J Crit Care. 2002;17(2):114–21.CrossRefPubMedGoogle Scholar
  47. 47.
    Bagwell CE, Salzberg AM, Sonnino RE, Haynes JH. Potentially lethal complications of central venous catheter placement. J Pediatr Surg. 2000;35(5):709–13.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gregor M. Walker
    • 1
    Email author
  • Constantinos A. Hajivassiliou
    • 2
  1. 1.Department of Paediatric SurgeryRoyal Hospital for ChildrenGlasgowUK
  2. 2.Paediatrics/Neonatal SurgeryRoyal Hospital for Sick Children and University of GlasgowGlasgowUK

Personalised recommendations