Melanoma and Other Skin Cancers

  • Stuart B. WatsonEmail author


Although malignant melanoma of childhood or adolescence is a relatively rare cancer, the incidence has increased substantially in recent decades. Childhood sun exposure is an important causative factor, in association with certain phenotypes. Preventative programmes have been shown to be beneficial in controlling incidence.

Diagnosis may be difficult as many melanomata in children present with an “atypical” appearance. Awareness of the condition and a low threshold for excision of unusual skin lesions may help to achieve early diagnosis which is the key to successful treatment. Adequate surgical treatment remains the mainstay of treatment.

Non-melanoma skin cancers tend to be associated with a specific predisposing lesion or condition. Biopsy for diagnosis and surgery are the keys to management of these lesions.


Melanoma Skin cancer Childhood Adolescence Sentinel node Squamous cell carcinoma Basal cell carcinoma Pediatric 


  1. 1.
    Lange JR, Balch CM. Melanoma in children: heightened awareness of an uncommon but often curable malignancy. Pediatrics. 2005;115(3):802–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomas JM, Giblin V. Cure of cutaneous melanoma. BMJ. 2006;332(7548):987–8.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ferrari A, Bono A, Collini P, Rodolfo M, Santinami M. What do we know about cutaneous melanoma of childhood? Contemp Pediatr. 2006;23(9):42–8.Google Scholar
  4. 4.
    Aldrink JH, Selim MA, Diesen DL, Johnson J, Pruitt SK, Tyler DS, et al. Pediatric melanoma: a single-institution experience of 150 patients. J Pediatr Surg. 2009;44(8):1514–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Huynh PM, Grant-Kels JM, Grin CM. Childhood melanoma: update and treatment. Int J Dermatol. 2005;44(9):715–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Lange JR, Palis BE, Chang DC, Soong SJ, Balch CM. Melanoma in children and teenagers: an analysis of patients from the National Cancer Data Base. J Clin Oncol. 2007;25(11):1363–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Karlsson P, Boeryd B, Sander B, Westermark P, Rosdahl I. Increasing incidence of cutaneous malignant melanoma in children and adolescents 12-19 years of age in Sweden 1973-92. Acta Derm Venereol. 1998;78(4):289–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Strouse JJ, Fears TR, Tucker MA, Wayne AS. Pediatric melanoma: risk factor and survival analysis of the surveillance, epidemiology and end results database. J Clin Oncol. 2005;23(21):4735–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Whiteman DC, Bray CA, Siskind V, Green AC, Hole DJ, Mackie RM. Changes in the incidence of cutaneous melanoma in the west of Scotland and Queensland, Australia: hope for health promotion? Eur J Cancer Prev. 2008;17(3):243–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Karlsson PM, Fredrikson M. Cutaneous malignant melanoma in children and adolescents in Sweden, 1993-2002: the increasing trend is broken. Int J Cancer. 2007;121(2):323–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Whiteman DC, Valery P, McWhirter W, Green AC. Risk factors for childhood melanoma in Queensland. Aust Int J Cancer. 1997;70(1):26–31.CrossRefGoogle Scholar
  12. 12.
    MacKie RM. Risk factors for the development of primary cutaneous malignant melanoma. Dermatol Clin. 2002;20(4):597–600.PubMedCrossRefGoogle Scholar
  13. 13.
    Schaffer JV. Pigmented lesions in children: when to worry. Curr Opin Pediatr. 2007;19(4):430–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Whiteman D, Valery P, McWhirter W, Green A. Incidence of cutaneous childhood melanoma in Queensland. Aust Int J Cancer. 1995;63(6):765–8.CrossRefGoogle Scholar
  15. 15.
    Gibbs P, Moore A, Robinson W, Walsh P, Golitz L, Gonzalez R. Pediatric melanoma: are recent advances in the management of adult melanoma relevant to the pediatric population. J Pediatr Hematol Oncol. 2000;22(5):428–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Zaal LH, Mooi WJ, Klip H, van der Horst CM. Risk of malignant transformation of congenital melanocytic nevi: a retrospective nationwide study from The Netherlands. Plast Reconstr Surg. 2005;116(7):1902–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Hale EK, Stein J, Ben-Porat L, Panageas KS, Eichenbaum MS, Marghoob AA, et al. Association of melanoma and neurocutaneous melanocytosis with large congenital melanocytic naevi – results from the NYU-LCMN registry. Br J Dermatol. 2005;152(3):512–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Bett BJ. Large or multiple congenital melanocytic nevi: occurrence of cutaneous melanoma in 1008 persons. J Am Acad Dermatol. 2005;52(5):793–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Ka VS, Dusza SW, Halpern AC, Marghoob AA. The association between large congenital melanocytic naevi and cutaneous melanoma: preliminary findings from an Internet-based registry of 379 patients. Melanoma Res. 2005;15(1):61–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Kinsler VA, Chong WK, Aylett SE, Atherton DJ. Complications of congenital melanocytic naevi in children: analysis of 16 years’ experience and clinical practice. Br J Dermatol. 2008;159(4):907–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Kinsler V, Bulstrode N. The role of surgery in the management of congenital melanocytic naevi in children: a perspective from Great Ormond Street Hospital. J Plast Reconstr Aesthet Surg. 2009;62(5):595–601.PubMedCrossRefGoogle Scholar
  22. 22.
    Arneja JS, Gosain AK. Giant congenital melanocytic nevi. Plast Reconstr Surg. 2007;120(2):26e–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Livestro DP, Kaine EM, Michaelson JS, Mihm MC, Haluska FG, Muzikansky A, et al. Melanoma in the young: differences and similarities with adult melanoma: a case-matched controlled analysis. Cancer. 2007;110(3):614–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, et al. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8(1):15–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Pho L, Grossman D, Leachman SA. Melanoma genetics: a review of genetic factors and clinical phenotypes in familial melanoma. Curr Opin Oncol. 2006;18(2):173–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Udayakumar D, Tsao H. Melanoma genetics: an update on risk-associated genes. Hematol Oncol Clin North Am. 2009;23(3):415–29, vii.PubMedCrossRefGoogle Scholar
  27. 27.
    Pappo AS. Melanoma in children and adolescents. Eur J Cancer. 2003;39(18):2651–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Tsao H, Zhang X, Kwitkiwski K, Finkelstein DM, Sober AJ, Haluska FG. Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma. Arch Dermatol. 2000;136(9):1118–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Clark Jr WH, Elder DE, Guerry D, Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol. 1984;15(12):1147–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Miller AJ, Mihm Jr MC. Melanoma. N Engl J Med. 2006;355(1):51–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Breen T MPH. Melanoma in children and adolescents. Diagn Histoplathol. 2008;14:18–27.Google Scholar
  32. 32.
    Lee DA, Cohen JA, Twaddell WS, Palacios G, Gill M, Levit E, et al. Are all melanomas the same? Spitzoid melanoma is a distinct subtype of melanoma. Cancer. 2006;106(4):907–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Leman JA, Evans A, Mooi W, MacKie RM. Outcomes and pathological review of a cohort of children with melanoma. Br J Dermatol. 2005;152(6):1321–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Handfield-Jones SE, Smith NP. Malignant melanoma in childhood. Br J Dermatol. 1996;134(4):607–16.PubMedCrossRefGoogle Scholar
  35. 35.
    Spatz A, Avril MF. Melanoma in childhood: review and perspectives. Pediatr Dev Pathol. 1998;1(6):463–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Wechsler J, Bastuji-Garin S, Spatz A, Bailly C, Cribier B, Andrac-Meyer L, et al. Reliability of the histopathologic diagnosis of malignant melanoma in childhood. Arch Dermatol. 2002;138(5):625–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Lyon VB. The spitz nevus: review and update. Clin Plast Surg. 2009;37(1):21–33.CrossRefGoogle Scholar
  38. 38.
    Barnhill RL. Childhood melanoma. Semin Diagn Pathol. 1998;15(3):189–94.PubMedGoogle Scholar
  39. 39.
    Granter SR, McKee PH, Calonje E, Mihm Jr MC, Busam K. Melanoma associated with blue nevus and melanoma mimicking cellular blue nevus: a clinicopathologic study of 10 cases on the spectrum of so-called ‘malignant blue nevus’. Am J Surg Pathol. 2001;25(3):316–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Antony FC, Sanclemente G, Shaikh H, Trelles AS, Calonje E. Pigment synthesizing melanoma (so-called animal type melanoma): a clinicopathological study of 14 cases of a poorly known distinctive variant of melanoma. Histopathology. 2006;48(6):754–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Ferrari A, Bono A, Baldi M, Collini P, Casanova M, Pennacchioli E, et al. Does melanoma behave differently in younger children than in adults? A retrospective study of 33 cases of childhood melanoma from a single institution. Pediatrics. 2005;115(3):649–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Rigel DS, Friedman RJ, Kopf AW, Polsky D. ABCDE – an evolving concept in the early detection of melanoma. Arch Dermatol. 2005;141(8):1032–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Mackie RM, Doherty VR. Seven-point checklist for melanoma. Clin Exp Dermatol. 1991;16(2):151–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Zangari A, Bernardini ML, Tallarico R, Ilari M, Giangiacomi M, Offidani AM, et al. Indications for excision of nevi and melanoma diagnosed in a pediatric surgical unit. J Pediatr Surg. 2007;42(8):1412–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Breslow A. Tumor thickness in evaluating prognosis of cutaneous melanoma. Ann Surg. 1978;187(4):440.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    McGovern VJ, Mihm Jr MC, Bailly C, Booth JC, Clark Jr WH, Cochran AJ, et al. The classification of malignant melanoma and its histologic reporting. Cancer. 1973;32(6):1446–57.PubMedCrossRefGoogle Scholar
  48. 48.
    Saenz NC, Saenz-Badillos J, Busam K, LaQuaglia MP, Corbally M, Brady MS. Childhood melanoma survival. Cancer. 1999;85(3):750–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Marsden JR, Newton-Bishop JA, Burrows L, Cook M, Corrie PG, Cox NH, et al. Revised UK guidelines for the management of cutaneous melanoma 2010. J Plast Reconstr Aesthet Surg. 2010;63(9):1401–19.PubMedCrossRefGoogle Scholar
  50. 50.
    Sawyer A, McGoldrick RB, Mackey SP, Allan R, Powell B. Does staging computered tomography change management in thick malignant melanoma? J Plast Reconstr Aesthet Surg. 2009;62(4):453–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg. 1970;172(5):902–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sladden MJ, Balch C, Barzilai DA, Berg D, Freiman A, Handiside T, et al. Surgical excision margins for primary cutaneous melanoma. Cochrane Database Syst Rev. 2009;(4):CD004835.Google Scholar
  53. 53.
    Thomas JM. Caution with sentinel node biopsy in cutaneous melanoma. Br J Surg. 2006;93(2):129–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Thompson JF, Shaw HM. Benefits of sentinel node biopsy for melanoma: a review based on interim results of the first Multicenter Selective Lymphadenectomy Trial. ANZ J Surg. 2006;76(3):100–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Howman-Giles R, Shaw HM, Scolyer RA, Murali R, Wilmott J, McCarthy SW, et al. Sentinel lymph node biopsy in pediatric and adolescent cutaneous melanoma patients. Ann Surg Oncol. 2009;17(1):138–43.PubMedCrossRefGoogle Scholar
  56. 56.
    Mu E, Lange JR, Strouse JJ. Comparison of the use and results of sentinel lymph node biopsy in children and young adults with melanoma. Cancer. 2012;118(10):2700–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Drepper H, Biess B, Hofherr B, Hundeiker M, Lippold A, Otto F, et al. The prognosis of patients with stage III melanoma. Prospective long-term study of 286 patients of the Fachklinik Hornheide. Cancer. 1993;71(4):1239–46.PubMedCrossRefGoogle Scholar
  58. 58.
    Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U. A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res. 2004;10(5):1670–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Chao MM, Schwartz JL, Wechsler DS, Thornburg CD, Griffith KA, Williams JA. High-risk surgically resected pediatric melanoma and adjuvant interferon therapy. Pediatr Blood Cancer. 2005;44(5):441–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Shah NC, Gerstle JT, Stuart M, Winter C, Pappo A. Use of sentinel lymph node biopsy and high-dose interferon in pediatric patients with high-risk melanoma: the Hospital for Sick Children experience. J Pediatr Hematol Oncol. 2006;28(8):496–500.PubMedCrossRefGoogle Scholar
  61. 61.
    Hayes FA, Green AA. Malignant melanoma in childhood: clinical course and response to chemotherapy. J Clin Oncol. 1984;2(11):1229–34.PubMedGoogle Scholar
  62. 62.
    Boddie Jr AW, Cangir A. Adjuvant and neoadjuvant chemotherapy with dacarbazine in high-risk childhood melanoma. Cancer. 1987;60(8):1720–3.PubMedCrossRefGoogle Scholar
  63. 63.
    Burmeister BH, Henderson MA, Ainslie J, Fisher R, Di Iulio J, Smithers BM, et al. Adjuvant radiotherapy versus observation alone for patients at risk of lymph-node field relapse after therapeutic lymphadenectomy for melanoma: a randomised trial. Lancet Oncol. 2012;13(6):589–97.PubMedCrossRefGoogle Scholar
  64. 64.
    Ko CB, Walton S, Keczkes K, Bury HP, Nicholson C. The emerging epidemic of skin cancer. Br J Dermatol. 1994;130(3):269–72.PubMedCrossRefGoogle Scholar
  65. 65.
    Glass AG, Hoover RN. The emerging epidemic of melanoma and squamous cell skin cancer. JAMA. 1989;262(15):2097–100.PubMedCrossRefGoogle Scholar
  66. 66.
    Swanbeck G, Hillstrom L. Analysis of etiological factors of squamous cell skin cancer of different locations. 4. Concluding remarks. Acta Derm Venereol. 1971;51(2):151–6.PubMedGoogle Scholar
  67. 67.
    Motley R, Kersey P, Lawrence C. Multiprofessional guidelines for the management of the patient with primary cutaneous squamous cell carcinoma. Br J Dermatol. 2002;146(1):18–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Christenson LJ, Borrowman TA, Vachon CM, Tollefson MM, Otley CC, Weaver AL, et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA. 2005;294(6):681–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Stiller CA, Allen MB, Eatock EM. Childhood cancer in Britain: the National Registry of Childhood Tumours and incidence rates 1978-1987. Eur J Cancer. 1995;31A(12):2028–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Pearce MS, Parker L, Cotterill SJ, Gordon PM, Craft AW. Skin cancer in children and young adults: 28 years’ experience from the Northern Region Young Person’s Malignant Disease Registry. UK Melanoma Res. 2003;13(4):421–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Scottish Health Statistics. ISD Scotland; 2012 [cited 2012 14 June 2012]; Available from:
  72. 72.
    Lo Muzio L. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J Rare Dis. 2008;3:32.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Richards FM, Goudie DR, Cooper WN, Jene Q, Barroso I, Wicking C, et al. Mapping the multiple self-healing squamous epithelioma (MSSE) gene and investigation of xeroderma pigmentosum group A (XPA) and PATCHED (PTCH) as candidate genes. Hum Genet. 1997;101(3):317–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Boutet N, Bignon YJ, Drouin-Garraud V, Sarda P, Longy M, Lacombe D, et al. Spectrum of PTCH1 mutations in French patients with Gorlin syndrome. J Invest Dermatol. 2003;121(3):478–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Goldstein AM, Bale SJ, Peck GL, DiGiovanna JJ. Sun exposure and basal cell carcinomas in the nevoid basal cell carcinoma syndrome. J Am Acad Dermatol. 1993;29(1):34–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Androphy EJ, Dvoretzky I, Lowy DR. X-linked inheritance of epidermodysplasia verruciformis. Genetic and virologic studies of a kindred. Arch Dermatol. 1985;121(7):864–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Sun XK, Chen JF, Xu AE. A homozygous nonsense mutation in the EVER2 gene leads to epidermodysplasia verruciformis. Clin Exp Dermatol. 2005;30(5):573–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Patel T, Morrison LK, Rady P, Tyring S. Epidermodysplasia verruciformis and susceptibility to HPV. Dis Markers. 2010;29(3–4):199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Majewski S, Jablonska S. Epidermodysplasia verruciformis as a model of human papillomavirus-induced genetic cancer of the skin. Arch Dermatol. 1995;131(11):1312–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Sterling JC. Human papillomaviruses and skin cancer. J Clin Virol. 2005;32 Suppl 1:S67–71.PubMedCrossRefGoogle Scholar
  81. 81.
    McDermott DF, Gammon B, Snijders PJ, Mbata I, Phifer B, Howland Hartley A, et al. Autosomal dominant epidermodysplasia verruciformis lacking a known EVER1 or EVER2 mutation. Pediatr Dermatol. 2009;26(3):306–10.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ramoz N, Rueda LA, Bouadjar B, Montoya LS, Orth G, Favre M. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet. 2002;32(4):579–81.PubMedCrossRefGoogle Scholar
  83. 83.
    Lazarczyk M, Pons C, Mendoza JA, Cassonnet P, Jacob Y, Favre M. Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. J Exp Med. 2008;205(1):35–42.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kraemer KH, Lee MM, Andrews AD, Lambert WC. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm. Arch Dermatol. 1994;130(8):1018–21.PubMedCrossRefGoogle Scholar
  85. 85.
    Cartault F, Nava C, Malbrunot AC, Munier P, Hebert JC, N’Guyen P, et al. A new XPC gene splicing mutation has lead to the highest worldwide prevalence of xeroderma pigmentosum in black Mahori patients. DNA Repair (Amst). 2011;10(6):577–85.CrossRefGoogle Scholar
  86. 86.
    Takebe H, Miki Y, Kozuka T, Furuyama JI, Tanaka K. DNA repair characteristics and skin cancers of xeroderma pigmentosum patients in Japan. Cancer Res. 1977;37(2):490–5.PubMedGoogle Scholar
  87. 87.
    Kleijer WJ, Laugel V, Berneburg M, Nardo T, Fawcett H, Gratchev A, et al. Incidence of DNA repair deficiency disorders in western Europe: Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. DNA Repair (Amst). 2008;7(5):744–50.CrossRefGoogle Scholar
  88. 88.
    Lehmann AR, McGibbon D, Stefanini M. Xeroderma pigmentosum. Orphanet J Rare Dis. 2011;6:70.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Oetting WS. Albinism. Curr Opin Pediatr. 1999;11(6):565–71.PubMedCrossRefGoogle Scholar
  90. 90.
    Summers CG. Albinism: classification, clinical characteristics, and recent findings. Optom Vis Sci. 2009;86(6):659–62.PubMedCrossRefGoogle Scholar
  91. 91.
    Evans CD, Warin RP. Multiple self-healing epitheliomata (Ferguson Smith). Br J Dermatol. 1961;73:421.PubMedCrossRefGoogle Scholar
  92. 92.
    Smith F, Saniman PD. Diagnosis: multiple self-healing epitheliomata. Br J Dermatol. 1952;64(7–8):297–8.PubMedGoogle Scholar
  93. 93.
    Goudie DR, Yuille MA, Leversha MA, Furlong RA, Carter NP, Lush MJ, et al. Multiple self-healing squamous epitheliomata (ESS1) mapped to chromosome 9q22-q31 in families with common ancestry. Nat Genet. 1993;3(2):165–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Dunkin CS, Abouzeid M, Sarangapani K. Malignant transformation in congenital sebaceous naevi in childhood. J R Coll Surg Edinb. 2001;46(5):303–6.PubMedGoogle Scholar
  95. 95.
    Cribier B, Scrivener Y, Grosshans E. Tumors arising in nevus sebaceus: a study of 596 cases. J Am Acad Dermatol. 2000;42(2 Pt 1):263–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Mays SR, Cohen PR. Emerging dermatologic issues in the oncology patient. Semin Cutan Med Surg. 2006;25(4):179–89.PubMedCrossRefGoogle Scholar
  97. 97.
    Debray D, Baudouin V, Lacaille F, Charbit M, Rivet C, Harambat J, et al. De novo malignancy after solid organ transplantation in children. Transplant Proc. 2009;41(2):674–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Berg D, Otley CC. Skin cancer in organ transplant recipients: epidemiology, pathogenesis, and management. J Am Acad Dermatol. 2002;47(1):1–17; quiz 18–20.PubMedCrossRefGoogle Scholar
  99. 99.
    Maclean H, Dhillon B, Ironside J. Squamous cell carcinoma of the eyelid and the acquired immunodeficiency syndrome. Am J Ophthalmol. 1996;121(2):219–21.PubMedCrossRefGoogle Scholar
  100. 100.
    Maurer TA, Christian KV, Kerschmann RL, Berzin B, Palefsky JM, Payne D, et al. Cutaneous squamous cell carcinoma in human immunodeficiency virus-infected patients. A study of epidemiologic risk factors, human papillomavirus, and p53 expression. Arch Dermatol. 1997;133(5):577–83.PubMedCrossRefGoogle Scholar
  101. 101.
    Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008;8(10):743–54.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Zhang H, Ping XL, Lee PK, Wu XL, Yao YJ, Zhang MJ, et al. Role of PTCH and p53 genes in early-onset basal cell carcinoma. Am J Pathol. 2001;158(2):381–5.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Xie J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998;391(6662):90–2.PubMedCrossRefGoogle Scholar
  104. 104.
    Marghoob AA, Marghoob AA. Skin cancers and their etiologies. Semin Cutan Med Surg [Review]. 2011;30(4 Suppl):S1–5.CrossRefGoogle Scholar
  105. 105.
    Schuller DE, Berg JW, Sherman G, Krause CJ. Cutaneous basosquamous carcinoma of the head and neck: a comparative analysis. Otolaryngol Head Neck Surg. 1979;87(4):420–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Borel DM. Cutaneous basosquamous carcinoma. Review of the literature and report of 35 cases. Arch Pathol. 1973;95(5):293–7.PubMedGoogle Scholar
  107. 107.
    Riefkohl R, Wittels B, McCarty K. Metastatic basal cell carcinoma. Ann Plast Surg. 1984;13(6):525–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Griffiths RW, Suvarna SK, Stone J. Basal cell carcinoma histological clearance margins: an analysis of 1539 conventionally excised tumours. Wider still and deeper? J Plast Reconstr Aesthet Surg. 2007;60(1):41–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Telfer NR, Colver GB, Morton CA. Guidelines for the management of basal cell carcinoma. Br J Dermatol. 2008;159(1):35–48.PubMedCrossRefGoogle Scholar
  110. 110.
    Breuninger H, Dietz K. Prediction of subclinical tumor infiltration in basal cell carcinoma. J Dermatol Surg Oncol. 1991;17(7):574–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Al-Othman MO, Mendenhall WM, Amdur RJ. Radiotherapy alone for clinical T4 skin carcinoma of the head and neck with surgery reserved for salvage. Am J Otolaryngol. 2001;22(6):387–90.PubMedCrossRefGoogle Scholar
  112. 112.
    Rio E, Bardet E, Ferron C, Peuvrel P, Supiot S, Campion L, et al. Interstitial brachytherapy of periorificial skin carcinomas of the face: a retrospective study of 97 cases. Int J Radiat Oncol Biol Phys. 2005;63(3):753–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Kwan W, Wilson D, Moravan V. Radiotherapy for locally advanced basal cell and squamous cell carcinomas of the skin. Int J Radiat Oncol Biol Phys. 2004;60(2):406–11.PubMedCrossRefGoogle Scholar
  114. 114.
    Childers BJ, Goldwyn RM, Ramos D, Chaffey J, Harris JR. Long-term results of irradiation for basal cell carcinoma of the skin of the nose. Plast Reconstr Surg. 1994;93(6):1169–73.PubMedCrossRefGoogle Scholar
  115. 115.
    Caccialanza M, Piccinno R, Grammatica A. Radiotherapy of recurrent basal and squamous cell skin carcinomas: a study of 249 re-treated carcinomas in 229 patients. Eur J Dermatol. 2001;11(1):25–8.PubMedGoogle Scholar
  116. 116.
    Guix B, Finestres F, Tello J, Palma C, Martinez A, Guix J, et al. Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds. Int J Radiat Oncol Biol Phys. 2000;47(1):95–102.PubMedCrossRefGoogle Scholar
  117. 117.
    Morton CA, McKenna KE, Rhodes LE. Guidelines for topical photodynamic therapy: update. Br J Dermatol. 2008;159(6):1245–66.PubMedCrossRefGoogle Scholar
  118. 118.
    Morton CA, Brown SB, Collins S, Ibbotson S, Jenkinson H, Kurwa H, et al. Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group. Br J Dermatol. 2002;146(4):552–67.PubMedCrossRefGoogle Scholar
  119. 119.
    Nikkels AF, Pierard-Franchimont C, Nikkels-Tassoudji N, Bourguignon R, Pierard GE. Photodynamic therapy and imiquimod immunotherapy for basal cell carcinomas. Acta Clin Belg. 2005;60(5):227–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Varma S, Wilson H, Kurwa HA, Gambles B, Charman C, Pearse AD, et al. Bowen’s disease, solar keratoses and superficial basal cell carcinomas treated by photodynamic therapy using a large-field incoherent light source. Br J Dermatol. 2001;144(3):567–74.PubMedCrossRefGoogle Scholar
  121. 121.
    Clark C, Bryden A, Dawe R, Moseley H, Ferguson J, Ibbotson SH. Topical 5-aminolaevulinic acid photodynamic therapy for cutaneous lesions: outcome and comparison of light sources. Photodermatol Photoimmunol Photomed. 2003;19(3):134–41.PubMedCrossRefGoogle Scholar
  122. 122.
    Gollnick H, Barona CG, Frank RG, Ruzicka T, Megahed M, Tebbs V, et al. Recurrence rate of superficial basal cell carcinoma following successful treatment with imiquimod 5 % cream: interim 2-year results from an ongoing 5-year follow-up study in Europe. Eur J Dermatol. 2005;15(5):374–81.PubMedGoogle Scholar
  123. 123.
    Schulze HJ, Cribier B, Requena L, Reifenberger J, Ferrandiz C, Garcia Diez A, et al. Imiquimod 5 % cream for the treatment of superficial basal cell carcinoma: results from a randomized vehicle-controlled phase III study in Europe. Br J Dermatol. 2005;152(5):939–47.PubMedCrossRefGoogle Scholar
  124. 124.
    Vidal D, Matias-Guiu X, Alomar A. Fifty-five basal cell carcinomas treated with topical imiquimod: outcome at 5-year follow-up. Arch Dermatol. 2007;143(2):266–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, et al. Sunburn and p53 in the onset of skin cancer. Nature. 1994;372(6508):773–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Brash DE. Roles of the transcription factor p53 in keratinocyte carcinomas. Br J Dermatol. 2006;154 Suppl 1:8–10.PubMedCrossRefGoogle Scholar
  127. 127.
    Brown VL, Harwood CA, Crook T, Cronin JG, Kelsell DP, Proby CM. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J Invest Dermatol. 2004;122(5):1284–92.PubMedCrossRefGoogle Scholar
  128. 128.
    Katiyar SK. UV-induced immune suppression and photocarcinogenesis: chemoprevention by dietary botanical agents. Cancer Lett. 2007;255(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Salehi Z, Mashayekhi F, Shahosseini F. Significance of eIF4E expression in skin squamous cell carcinoma. Cell Biol Int. 2007;31(11):1400–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Breuninger H, Black B, Rassner G. Microstaging of squamous cell carcinomas. Am J Clin Pathol. 1990;94(5):624–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Friedman HI, Cooper PH, Wanebo HJ. Prognostic and therapeutic use of microstaging of cutaneous squamous cell carcinoma of the trunk and extremities. Cancer. 1985;56(5):1099–105.PubMedCrossRefGoogle Scholar
  132. 132.
    Rowe DE, Carroll RJ, Day Jr CL. Prognostic factors for local recurrence, metastasis, and survival rates in squamous cell carcinoma of the skin, ear, and lip. Implications for treatment modality selection. J Am Acad Dermatol. 1992;26(6):976–90.PubMedCrossRefGoogle Scholar
  133. 133.
    van den Brekel MW, Stel HV, Castelijns JA, Croll GJ, Snow GB. Lymph node staging in patients with clinically negative neck examinations by ultrasound and ultrasound-guided aspiration cytology. Am J Surg. 1991;162(4):362–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Sumi M, Ohki M, Nakamura T. Comparison of sonography and CT for differentiating benign from malignant cervical lymph nodes in patients with squamous cell carcinoma of the head and neck. AJR Am J Roentgenol. 2001;176(4):1019–24.PubMedCrossRefGoogle Scholar
  135. 135.
    Motley R, Kersey P, Lawrence C. Multiprofessional guidelines for the management of the patient with primary cutaneous squamous cell carcinoma. Br J Plast Surg. 2003;56(2):85–91.PubMedCrossRefGoogle Scholar
  136. 136.
    Seidler AM, Bramlette TB, Washington CV, Szeto H, Chen SC. Mohs versus traditional surgical excision for facial and auricular nonmelanoma skin cancer: an analysis of cost-effectiveness. Dermatol Surg. 2009;35(11):1776–87.PubMedCrossRefGoogle Scholar
  137. 137.
    Robins P, Dzubow LM, Rigel DS. Squamous-cell carcinoma treated by Mohs’ surgery: an experience with 414 cases in a period of 15 years. J Dermatol Surg Oncol. 1981;7(10):800–1.PubMedCrossRefGoogle Scholar
  138. 138.
    Ross AS, Schmults CD. Sentinel lymph node biopsy in cutaneous squamous cell carcinoma: a systematic review of the English literature. Dermatol Surg. 2006;32(11):1309–21.PubMedGoogle Scholar
  139. 139.
    Veness M, Richards S. Role of modern radiotherapy in treating skin cancer. Australas J Dermatol. 2003;44(3):159–66; quiz 167–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Iqbal CW, St Peter S, Ishitani MB. Pediatric dermatofibrosarcoma protuberans: multi-institutional outcomes. J Surg Res. 2011;170(1):69–72.PubMedCrossRefGoogle Scholar
  141. 141.
    Dimitropoulos VA. Dermatofibrosarcoma protuberans. Dermatol Ther. 2008;21(6):428–32.PubMedCrossRefGoogle Scholar
  142. 142.
    Kikuchi K, Soma Y, Fujimoto M, Kadono T, Sato S, Abe M, et al. Dermatofibrosarcoma protuberans: increased growth response to platelet-derived growth factor BB in cell culture. Biochem Biophys Res Commun. 1993;196(1):409–15.PubMedCrossRefGoogle Scholar
  143. 143.
    Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15(1):95–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Shimizu A, O’Brien KP, Sjoblom T, Pietras K, Buchdunger E, Collins VP, et al. The dermatofibrosarcoma protuberans-associated collagen type I alpha1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 1999;59(15):3719–23.PubMedGoogle Scholar
  145. 145.
    Heuvel ST, Suurmeijer A, Pras E, Van Ginkel RJ, Hoekstra HJ. Dermatofibrosarcoma protuberans: recurrence is related to the adequacy of surgical margins. Eur J Surg Oncol. 2010;36(1):89–94.PubMedCrossRefGoogle Scholar
  146. 146.
    Meguerditchian AN, Wang J, Lema B, Kraybill WG, Zeitouni NC, Kane 3rd JM. Wide excision or Mohs micrographic surgery for the treatment of primary dermatofibrosarcoma protuberans. Am J Clin Oncol. 2010;33(3):300–3.PubMedGoogle Scholar
  147. 147.
    Gloster Jr HM, Harris KR, Roenigk RK. A comparison between Mohs micrographic surgery and wide surgical excision for the treatment of dermatofibrosarcoma protuberans. J Am Acad Dermatol. 1996;35(1):82–7.PubMedGoogle Scholar
  148. 148.
    Baum CL, Link BK, Neppalli VT, Swick BL, Liu V. Reappraisal of the provisional entity primary cutaneous CD4+ small/medium pleomorphic T-cell lymphoma: a series of 10 adult and pediatric patients and review of the literature. J Am Acad Dermatol. 2011;65(4):739–48.PubMedCrossRefGoogle Scholar
  149. 149.
    Williams VL, Torres-Cabala CA, Duvic M. Primary cutaneous small- to medium-sized CD4+ pleomorphic T-cell lymphoma: a retrospective case series and review of the provisional cutaneous lymphoma category. Am J Clin Dermatol. 2011;12(6):389–401.PubMedCrossRefGoogle Scholar
  150. 150.
    Holden CA, Spittle MF, Jones EW. Angiosarcoma of the face and scalp, prognosis and treatment. Cancer. 1987;59(5):1046–57.PubMedCrossRefGoogle Scholar
  151. 151.
    Dehner LP. Juvenile xanthogranulomas in the first two decades of life: a clinicopathologic study of 174 cases with cutaneous and extracutaneous manifestations. Am J Surg Pathol. 2003;27(5):579–93.PubMedCrossRefGoogle Scholar
  152. 152.
    Mancini AJ, Prieto VG, Smoller BR. Role of cellular proliferation and apoptosis in the growth of xanthogranulomas. Am J Dermatopathol. 1998;20(1):17–21.PubMedCrossRefGoogle Scholar
  153. 153.
    Kraus MD, Haley JC, Ruiz R, Essary L, Moran CA, Fletcher CD. “Juvenile” xanthogranuloma: an immunophenotypic study with a reappraisal of histogenesis. Am J Dermatopathol. 2001;23(2):104–11.PubMedCrossRefGoogle Scholar
  154. 154.
    Janney CG, Hurt MA, Santa Cruz DJ. Deep juvenile xanthogranuloma. Subcutaneous and intramuscular forms. Am J Surg Pathol. 1991;15(2):150–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Canniesburn UnitGlasgow Royal Infirmary and Royal Hospital for Sick ChildrenGlasgowScotland, UK

Personalised recommendations