Skip to main content

Multifunctional Quantum Dot-Based Nanoscale Modalities for Theranostic Applications

  • Chapter
  • First Online:
  • 1245 Accesses

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 6))

Abstract

Quantum dots (QD) have shown unprecedented fluorescent properties that are capable of revolutionising the field of optical imaging. Due to its unique fluorescent properties, QD have been extensively explored as imaging reagents for the investigation of various biological behaviours in vitro and in vivo. The design and engineering of multifunctional, QD-based modalities have recently attracted enormous interest for simultaneous imaging and therapy. The presence of QD as imaging agent in the theranostic modalities allows for the visualisation of their behaviour in real time and, thus, allows the monitoring of biodistribution, the percentage of drugs in the target site and regional uptake of the drug, as well as clearance from the body in real time, after systematic administration. All this information obtained from QD-based theranostic modalities is believed to be greatly helpful for the better understanding of biological behaviours and further optimization of novel therapeutic modalities, in preclinical and clinical investigations. This chapter attempts to give a brief overview of QD ranging from fundamental knowledge to multifunctional QD-based theranostic modalities for gene therapy, chemotherapy and photodynamic therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Byrne WL, DeLille A, Kuo C et al (2013) Use of optical imaging to progress novel therapeutics to the clinic. J Control Release 172:523–534

    Article  Google Scholar 

  2. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614

    Article  Google Scholar 

  3. Pan D, Caruthers SD, Chen J et al (2010) Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem 2:471–490

    Article  Google Scholar 

  4. Stender AS, Marchuk K, Liu C et al (2013) Single cell optical imaging and spectroscopy. Chem Rev 113:2469–2527

    Article  Google Scholar 

  5. Zhang ZJ, Wang J, Chen CH (2013) Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater 25:3869–3880

    Article  MathSciNet  Google Scholar 

  6. Vahrmeijer AL, Hutteman M, van der Vorst JR et al (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10:507–518

    Article  Google Scholar 

  7. Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9:237–255

    Google Scholar 

  8. Handgraaf HJ, Verbeek FP, Tummers QR et al (2014) Real-time near-infrared fluorescence guided surgery in gynecologic oncology: a review of the current state of the art. Gynecol Oncol 135:606–613

    Article  Google Scholar 

  9. Mohajerani P, Adibi A, Kempner J, Yared W (2009) Compensation of optical heterogeneity-induced artifacts in fluorescence molecular tomography: theory and in vivo validation. J Biomed Opt 14:034021

    Article  Google Scholar 

  10. Wang LHV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462

    Article  Google Scholar 

  11. Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  Google Scholar 

  12. Li LL, Wu GH, Yang GH et al (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    Article  Google Scholar 

  13. Cao-Milan R, Liz-Marzan LM (2014) Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opin Drugs Deliv 11:741–752

    Article  Google Scholar 

  14. Gong H, Peng R, Liu Z (2013) Carbon nanotubes for biomedical imaging: the recent advances. Adv Drugs Deliv Rev 65:1951–1963

    Article  Google Scholar 

  15. Liu YS, Tu DT, Zhu HM, Chen XY (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924–6958

    Article  Google Scholar 

  16. Wang X, Lv JZ, Yao XY et al (2014) Screening and investigation of a cyanine fluorescent probe for simultaneous sensing of glutathione and cysteine under single excitation. Chem Commun 50:15439–15442

    Article  Google Scholar 

  17. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  18. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  Google Scholar 

  19. Gao X, Cui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  Google Scholar 

  20. Kim S, Lim YT, Soltesz EG et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22:93–97

    Article  Google Scholar 

  21. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drugs Deliv Rev 60:1226–1240

    Article  Google Scholar 

  22. Zrazhevskiy P, True LD, Gao XH (2013) Multicolor multicycle molecular profiling with quantum dots for single-cell analysis. Nat Protoc 8:1852–1869

    Article  Google Scholar 

  23. Benito-Alifonso D, Tremel S, Hou B et al (2014) Lactose as a “Trojan Horse” for quantum dot cell transport. Angew Chem Int Ed 53:810–814

    Article  Google Scholar 

  24. Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125:7100–7106

    Article  Google Scholar 

  25. Hines MA, Scholes GD (2003) Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater 15:1844–1849

    Article  Google Scholar 

  26. Zhong X, Feng Y, Knoll W, Han M (2003) Alloyed Zn(x)Cd(1-x)S nanocrystals with highly narrow luminescence spectral width. J Am Chem Soc 125:13559–13563

    Article  Google Scholar 

  27. Nakane Y, Tsukasaki Y, Sakata T et al (2013) Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm). Chem Commun 49:7584–7586

    Article  Google Scholar 

  28. Dabbousi BO, RodriguezViejo J, Mikulec FV et al (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

    Article  Google Scholar 

  29. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem-Us 100:468–471

    Article  Google Scholar 

  30. Kim S, Fisher B, Eisler HJ, Bawendi M (2003) Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J Am Chem Soc 125:11466–11467

    Article  Google Scholar 

  31. Pietryga JM, Schaller RD, Werder D et al (2004) Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J Am Chem Soc 126:11752–11753

    Article  Google Scholar 

  32. Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055

    Article  Google Scholar 

  33. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998

    Article  Google Scholar 

  34. Walker KAD, Morgan C, Doak SH, Dunstan PR (2012) Quantum dots for multiplexed detection and characterisation of prostate cancer cells using a scanning near-field optical microscope. PLoS One 7:e31592

    Article  Google Scholar 

  35. Stroh M, Zimmer JP, Duda DG et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11:678–682

    Article  Google Scholar 

  36. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  Google Scholar 

  37. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  Google Scholar 

  38. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  Google Scholar 

  39. Wu X, Liu H, Liu J et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  Google Scholar 

  40. Herod MR, Pineda RG, Mautner V, Onion D (2014) Quantum dot labelling of adenovirus allows highly sensitive single cell flow and imaging cytometry. Small

    Google Scholar 

  41. Cai WB, Shin DW, Chen K et al (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    Article  Google Scholar 

  42. Chen Y, Molnar M, Li L et al (2013) Characterization of VCAM-1-binding peptide-functionalized quantum dots for molecular imaging of inflamed endothelium. PLoS One 8:e83805

    Article  Google Scholar 

  43. Ballou B, Ernst LA, Andreko S et al (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396

    Article  Google Scholar 

  44. Si C, Zhang Y, Lv X et al (2014) In vivo lymph node mapping by cadmium tellurium quantum dots in rats. J Surg Res 192:305–311

    Article  Google Scholar 

  45. Akerman ME, Chan WC, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99:12617–12621

    Article  Google Scholar 

  46. Nurunnabi M, Cho KJ, Choi JS et al (2010) Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. Biomaterials 31:5436–5444

    Article  Google Scholar 

  47. Murray CB, Norris D, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  Google Scholar 

  48. Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphosphine mixture. Nano Lett 1:207–211

    Article  Google Scholar 

  49. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  Google Scholar 

  50. Xie R, Kolb U, Li J et al (2005) Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127:7480–7488

    Article  Google Scholar 

  51. Pons T, Pic E, Lequeux N et al (2010) Cadmium-free CuInS2/ZnS quantum dots for sentinel lymph node imaging with reduced toxicity. ACS Nano 4:2531–2538

    Article  Google Scholar 

  52. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2014) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small

    Google Scholar 

  53. Wang L, Wang Y, Xu T et al (2014) Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun 5:5357

    Article  Google Scholar 

  54. Chen XX, Jin QQ, Wu LZ et al (2014) Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew Chem Int Ed 53:12542–12547

    Google Scholar 

  55. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  Google Scholar 

  56. Bruchez M Jr, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  57. Pinaud F, King D, Moore HP, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126:6115–6123

    Article  Google Scholar 

  58. Huang BH, Tomalia DA (2005) Dendronization of gold and CdSe/cdS (core-shell) quantum functionalized dendrons dots with tomalia type, thiol core, poly(amidoamine) (PAMAM) dendrons. J Lumin 111:215–223

    Article  Google Scholar 

  59. Kim S, Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc 125:14652–14653

    Article  Google Scholar 

  60. Kirchner C, Javier AM, Susha AS et al (2005) Cytotoxicity of nanoparticle-loaded polymer capsules. Talanta 67:486–491

    Article  Google Scholar 

  61. Gerion D, Pinaud F, Williams SC et al (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871

    Article  Google Scholar 

  62. Dubertret B, Skourides P, Norris DJ et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  Google Scholar 

  63. Larson DR, Zipfel WR, Williams RM et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    Article  Google Scholar 

  64. Mattoussi H, Mauro JM, Goldman ER et al (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  Google Scholar 

  65. Liu TC, Zhang HL, Wang JH et al (2008) Study on molecular interactions between proteins on live cell membranes using quantum dot-based fluorescence resonance energy transfer. Anal Bioanal Chem 391:2819–2824

    Article  Google Scholar 

  66. Xing Y, Chaudry Q, Shen C et al (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165

    Article  Google Scholar 

  67. Lee J, Choi Y, Kim K et al (2010) Characterization and cancer cell specific binding properties of anti-EGFR antibody conjugated quantum dots. Bioconjug Chem 21:940–946

    Article  Google Scholar 

  68. Hafian H, Sukhanova A, Turini M et al (2014) Multiphoton imaging of tumor biomarkers with conjugates of single-domain antibodies and quantum dots. Nanomed Nanotechnol 10:1701–1709

    Article  Google Scholar 

  69. Rakovich TY, Mahfoud OK, Mohamed BM et al (2014) Highly sensitive single domain antibody-quantum dot conjugates for detection of HER2 biomarker in lung and breast cancer cells. ACS Nano 8:5682–5695

    Article  Google Scholar 

  70. Anas A, Okuda T, Kawashima N et al (2009) Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells. ACS Nano 3:2419–2429

    Article  Google Scholar 

  71. Duan HW, Nie SM (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129:3333–3338

    Article  Google Scholar 

  72. Bakalova R, Ohba H, Zhelev Z et al (2004) Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett 4:1567–1573

    Article  Google Scholar 

  73. Chen XC, Deng YL, Lin Y et al (2008) Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells. Nanotechnology 19:235105

    Article  Google Scholar 

  74. Zhang J, Jia X, Lv XJ et al (2010) Fluorescent quantum dot-labeled aptamer bioprobes specifically targeting mouse liver cancer cells. Talanta 81:505–509

    Article  Google Scholar 

  75. Zhang MZ, Yu RN, Chen J et al (2012) Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells. Nanotechnology 23:485104

    Article  Google Scholar 

  76. Patt M, Schildan A, Habermann B et al (2010) F-18- and C-11-labelling of quantum dots with n.c.a. [F-18]fluoroethyltosylate and [C-11]methyliodide: a feasibility study. J Radioanal Nucl Chem 283:487–491

    Article  Google Scholar 

  77. Cai WB, Chen K, Li ZB et al (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870

    Article  Google Scholar 

  78. Sun X, Huang X, Guo J et al (2014) Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J Am Chem Soc 136:1706–1709

    Article  Google Scholar 

  79. Fan HM, Olivo M, Shuter B et al (2010) Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. J Am Chem Soc 132:14803–14811

    Article  Google Scholar 

  80. Jing LH, Ding K, Kershaw SV et al (2014) Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv Mater 26:6367–6386

    Article  Google Scholar 

  81. Chakravarthy KV, Davidson BA, Helinski JD et al (2010) Doxorubicin-conjugated quantum dots to target alveolar macrophages and inflammation. Nanomedicine

    Google Scholar 

  82. Jung J, Solanki A, Memoli KA et al (2010) Selective inhibition of human brain tumor cells through multifunctional quantum-dot-based siRNA delivery. Angew Chem Int Ed Engl 49:103–107

    Article  Google Scholar 

  83. Ho YP, Leong KW (2010) Quantum dot-based theranostics. Nanoscale 2:60–68

    Article  Google Scholar 

  84. Li JM, Wang YY, Zhao MX et al (2012) Multifunctional QD-based co-delivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking. Biomaterials 33:2780–2790

    Article  Google Scholar 

  85. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143–153

    Article  Google Scholar 

  86. Zhang TT, Stilwell JL, Gerion D et al (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6:800–808

    Article  Google Scholar 

  87. Gao X, Yang L, Petros JA et al (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    Article  Google Scholar 

  88. Smith RA, Giorgio TD (2009) Quantitative measurement of multifunctional quantum dot binding to cellular targets using flow cytometry. Cytom Part A 75A:465–474

    Article  Google Scholar 

  89. Mathur A, Kelso DM (2010) Multispectral image analysis of binary encoded microspheres for highly multiplexed suspension arrays. Cytometry A 77:356–365

    Article  Google Scholar 

  90. Prasuhn DE, Feltz A, Blanco-Canosa JB et al (2010) Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano 4:5487–5497

    Article  Google Scholar 

  91. He X, Li Z, Chen M, Ma N (2014) DNA-programmed dynamic assembly of quantum dots for molecular computation. Angew Chem 53:14447–14450

    Article  Google Scholar 

  92. Chen K, Li ZB, Wang H et al (2008) Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 35:2235–2244

    Article  Google Scholar 

  93. Yoshioka T, Mishima H, Kaul Z et al (2010) Fate of bone marrow mesenchymal stem cells following the allogeneic transplantation of cartilaginous aggregates into osteochondral defects of rabbits. J Tissue Eng Regen Med

    Google Scholar 

  94. Liu J, Lau SK, Varma VA et al (2010) Multiplexed detection and characterization of rare tumor cells in Hodgkin’s lymphoma with multicolor quantum dots. Anal Chem 82:6237–6243

    Article  Google Scholar 

  95. Papagiannaros A, Upponi J, Hartner W et al (2010) Quantum dot-loaded immunomicelles for tumor imaging. BMC Med Imaging 10:22

    Article  Google Scholar 

  96. Al-Jamal WT, Al-Jamal KT, Tian B et al (2009) Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration. Mol Pharm 6:520–530

    Article  Google Scholar 

  97. Lu Y, Zhong Y, Wang J et al (2013) Aqueous synthesized near-infrared-emitting quantum dots for RGD-based in vivo active tumour targeting. Nanotechnology 24:135101

    Article  Google Scholar 

  98. Mulder WJM, Koole R, Brandwijk RJ et al (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6:1–6

    Article  Google Scholar 

  99. van Tilborg GAF, Mulder WJM, Chin PTK et al (2006) Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells. Bioconjug Chem 17:865–868

    Article  Google Scholar 

  100. Schipper ML, Cheng Z, Lee SW et al (2007) MicroPET-based biodistribution of quantum dots in living mice. J Nucl Med 48:1511–1518

    Article  Google Scholar 

  101. Cai WB, Chen XY (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3:1840–1854

    Article  Google Scholar 

  102. Ballou B, Lagerholm BC, Ernst LA et al (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86

    Article  Google Scholar 

  103. Choi HS, Ipe BI, Misra P et al (2009) Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett 9:2354–2359

    Article  Google Scholar 

  104. Fischer HC, Liu LC, Pang KS, Chan WCW (2006) Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 16:1299–1305

    Article  Google Scholar 

  105. Choi AO, Cho SJ, Desbarats J et al (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 5:1

    Article  Google Scholar 

  106. Schipper ML, Iyer G, Koh AL et al (2009) Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5:126–134

    Article  Google Scholar 

  107. Gopee NV, Roberts DW, Webb P et al (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98:249–257

    Article  Google Scholar 

  108. Parungo CP, Colson YL, Kim SW et al (2005) Sentinel lymph node mapping of the pleural space. Chest 127:1799–1804

    Article  Google Scholar 

  109. Parungo CP, Ohnishi S, Kim SW et al (2005) Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 129:844–850

    Article  Google Scholar 

  110. Soltesz EG, Kim S, Kim SW et al (2006) Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 13:386–396

    Article  Google Scholar 

  111. Soltesz EG, Kim S, Laurence RG et al (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 79:269–277

    Article  Google Scholar 

  112. Zimmer JP, Kim SW, Ohnishi S et al (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128:2526–2527

    Article  Google Scholar 

  113. Yang RS, Chang LW, Wu JP et al (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115:1339–1343

    Article  Google Scholar 

  114. Derfus AM, Chan WC, Bhatia SN (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  Google Scholar 

  115. Kirchner C, Liedl T, Kudera S et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Article  Google Scholar 

  116. Clarke SJ, Hollmann CA, Zhang Z et al (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5:409–417

    Article  Google Scholar 

  117. Lovric J, Bazzi HS, Cuie Y et al (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Article  Google Scholar 

  118. Cho SJ, Maysinger D, Jain M et al (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980

    Article  Google Scholar 

  119. Hoshino A, Fujioka K, Oku T et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  Google Scholar 

  120. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234

    Article  Google Scholar 

  121. Shiohara A, Hoshino A, Hanaki K et al (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675

    Article  Google Scholar 

  122. Boldt K, Bruns OT, Gaponik N, Eychmuller A (2006) Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers. J Phys Chem B 110:1959–1963

    Article  Google Scholar 

  123. Dollefeld H, Hoppe K, Kolny J et al (2002) Investigations on the stability of thiol stabilized semiconductor nanoparticles. Phys Chem Chem Phys 4:4747–4753

    Article  Google Scholar 

  124. Pellegrino T, Manna L, Kudera S et al (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4:703–707

    Article  Google Scholar 

  125. Chen FQ, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832

    Article  Google Scholar 

  126. Rieger S, Kulkarni RP, Darcy D et al (2005) Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 234:670–681

    Article  Google Scholar 

  127. Manabe N, Hoshino A, Liang YQ et al (2006) Quantum dot as a drug tracer in vivo. IEEE Trans Nanobiosci 5:263–267

    Article  Google Scholar 

  128. Stroh M, Zimmer JP, Duda DG et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Mater 11:678–682

    Google Scholar 

  129. Ho YP, Chen HH, Leong KW, Wang TH (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Control Release 116:83–89

    Article  Google Scholar 

  130. Chen HH, Ho YP, Jiang X et al (2009) Simultaneous non-invasive analysis of DNA condensation and stability by two-step QD-FRET. Nano Today 4:125–134

    Article  Google Scholar 

  131. Zhang BQ, Zhang YJ, Mallapragada SK, Clapp AR (2011) Sensing polymer/DNA polyplex dissociation using quantum dot fluorophores. ACS Nano 5:129–138

    Article  Google Scholar 

  132. Anas A, Akita H, Harashima H et al (2008) Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots. J Phys Chem B 112:10005–10011

    Article  Google Scholar 

  133. Srinivasan C, Lee J, Papadimitrakopoulos F et al (2006) Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots. Mol Ther: J Am Soc Genet Ther 14:192–201

    Article  Google Scholar 

  134. Li D, Li G, Guo W et al (2008) Glutathione-mediated release of functional plasmid DNA from positively charged quantum dots. Biomaterials 29:2776–2782

    Article  Google Scholar 

  135. Zintchenko A, Susha AS, Concia M et al (2009) Drug nanocarriers labeled with near-infrared-emitting quantum dots (quantoplexes): imaging fast dynamics of distribution in living animals. Mol Ther: J Am Soc Genet Ther 17:1849–1856

    Article  Google Scholar 

  136. Derfus AM, Chen AA, Min DH et al (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18:1391–1396

    Article  Google Scholar 

  137. Chen AA, Derfus AM, Khetani SR, Bhatia SN (2005) Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 33:e190

    Article  Google Scholar 

  138. Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571

    Article  Google Scholar 

  139. Jung JJ, Solanki A, Memoli KA et al (2010) Selective inhibition of human brain tumor cells through multifunctional quantum-dot-based siRNA delivery. Angew Chem Int Ed 49:103–107

    Article  Google Scholar 

  140. Walther C, Meyer K, Rennert R, Neundorf I (2008) Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug Chem 19:2346–2356

    Article  Google Scholar 

  141. Yezhelyev MV, Qi L, O’Regan RM et al (2008) Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 130:9006–9012

    Article  Google Scholar 

  142. Qi L, Gao X (2008) Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2:1403–1410

    Article  Google Scholar 

  143. Rowe MD, Thamm DH, Kraft SL, Boyes SG (2009) Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 10:983–993

    Article  Google Scholar 

  144. Kim K, Kim JH, Park H et al (2010) Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146:219–227

    Article  Google Scholar 

  145. Bagalkot V, Zhang L, Levy-Nissenbaum E et al (2007) Quantum dot – aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  Google Scholar 

  146. Weng KC, Noble CO, Papahadjopoulos-Sternberg B et al (2008) Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett 8:2851–2857

    Article  Google Scholar 

  147. Tian B, Al-Jamal WT, Al-Jamal KT, Kostarelos K (2011) Doxorubicin-loaded lipid-quantum dot hybrids: surface topography and release properties. Int J Pharm 416:443–447

    Article  Google Scholar 

  148. Al-Jamal WT, Al-Jamal KT, Tian B et al (2008) Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2:408–418

    Article  Google Scholar 

  149. Al-Jamal WT, Al-Jamal KT, Bomans PH et al (2008) Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small 4:1406–1415

    Article  Google Scholar 

  150. Gopalakrishnan G, Danelon C, Izewska P et al (2006) Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew Chem 45:5478–5483

    Article  Google Scholar 

  151. Erogbogbo F, Yong KT, Hu R et al (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide. ACS Nano 4:5131–5138

    Article  Google Scholar 

  152. Nair LV, Nagaoka Y, Maekawa T et al (2014) Quantum dot tailored to single wall carbon nanotubes: a multifunctional hybrid nanoconstruct for cellular imaging and targeted photothermal therapy. Small 10:2771–2775, 2740

    Article  Google Scholar 

  153. Shi DL, Cho HS, Huth C et al (2009) Conjugation of quantum dots and Fe3O4 on carbon nanotubes for medical diagnosis and treatment. Appl Phys Lett 95:223702

    Article  Google Scholar 

  154. Park JH, von Maltzahn G, Ruoslahti E et al (2008) Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem 47:7284–7288

    Article  Google Scholar 

  155. Zhou Y, Shi L, Li Q et al (2010) Imaging and inhibition of multi-drug resistance in cancer cells via specific association with negatively charged CdTe quantum dots. Biomaterials 31:4958–4963

    Article  Google Scholar 

  156. Juzenas P, Chen W, Sun YP et al (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev 60:1600–1614

    Article  Google Scholar 

  157. Martynenko IV, Kuznetsova VA, Orlova AC et al (2015) Chlorin e6-ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy. Nanotechnology 26:055102

    Article  Google Scholar 

  158. Yaghini E, Seifalian AM, MacRobert AJ (2009) Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine (Lond) 4:353–363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bowen Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tian, B. (2016). Multifunctional Quantum Dot-Based Nanoscale Modalities for Theranostic Applications. In: Dai, Z. (eds) Advances in Nanotheranostics I. Springer Series in Biomaterials Science and Engineering, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48544-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48544-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48542-2

  • Online ISBN: 978-3-662-48544-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics