Advertisement

Gold Nanorods for Biomedical Imaging and Therapy in Cancer

  • Zhenzhi Shi
  • Yu Xu
  • Aiguo WuEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 6)

Abstract

Gold nanorods (AuNRs) are an important type of noble metal nanoparticles with some superior performances, such as easy synthesis, easy modification, excellent biocompatibility, tunable surface plasmon effect, and photothermal and photodynamic effects. They have been proved to be promising in a wide range of biomedical applications such as biomedical imaging, photothermal therapy, photodynamic therapy, and drug or gene delivery. Because the longitudinally localized surface plasmon resonance absorption of AuNRs can be easily adjusted to the range of near-infrared (NIR) light which can penetrate deeply into human tissues with minimal invasion, AuNRs as great nanocarriers and imaging agents reveal a great application prospect for photoacoustic tomography, photothermal therapy, or NIR light-mediated theranostic platform. Herein, we begin this chapter of AuNRs by summarizing their synthesis methods, surface modification, and functionalization, then we describe their optical properties. Besides, we focus on the recent progress in diagnostic, therapeutic, and theranostic applications of AuNRs in cancer.

Keywords

Gold nanorods Theranostics Cancer therapy Biomedical imaging Photothermal therapy Photodynamic therapy Photoacoustic imaging 

Notes

Acknowledgments

This work was supported by the National Nature Science Foundation of China (81401452 and U1432114), Hundred Talents Program of the Chinese Academy of Sciences (2010-735), and by Key Breakthrough Program of Chinese Academy of Sciences (KGZD-EW-T06), and Ningbo Natural Science Foundation (2014A610158).

References

  1. 1.
    Zhang ZJ, Wang J, Chen CY (2013) Gold nanorods based platforms for light-mediated theranostics. Theranostics 3:223–238CrossRefGoogle Scholar
  2. 2.
    Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693CrossRefGoogle Scholar
  3. 3.
    Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24:4811–4841CrossRefGoogle Scholar
  4. 4.
    Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903CrossRefGoogle Scholar
  5. 5.
    Xie J, Lee S, Chen XY (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079CrossRefGoogle Scholar
  6. 6.
    Jain PK, Huang XH, El-Sayed IH et al (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586CrossRefGoogle Scholar
  7. 7.
    Dreaden EC, Alkilany AM, Huang XH et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779CrossRefGoogle Scholar
  8. 8.
    Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  9. 9.
    Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261CrossRefGoogle Scholar
  10. 10.
    Grzelczak M, Perez-Juste J, Mulvaney P et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRefGoogle Scholar
  11. 11.
    Langille MR, Personick ML, Zhang J et al (2012) Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc 134:14542–14554CrossRefGoogle Scholar
  12. 12.
    Burda C, Chen XB, Narayanan R et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  13. 13.
    Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966CrossRefGoogle Scholar
  14. 14.
    Kim F, Song JH, Yang PD (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317CrossRefGoogle Scholar
  15. 15.
    Yu YY, Chang SS, Lee CL et al (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664CrossRefGoogle Scholar
  16. 16.
    Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416CrossRefGoogle Scholar
  17. 17.
    Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067CrossRefGoogle Scholar
  18. 18.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  19. 19.
    Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420CrossRefGoogle Scholar
  20. 20.
    Liu FK, Chang YC, Ko FH et al (2004) Microwave rapid heating for the synthesis of gold nanorods. Mater Lett 58:373–377CrossRefGoogle Scholar
  21. 21.
    Jana NR (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882CrossRefGoogle Scholar
  22. 22.
    Xu X, Zhao Y, Xue X et al (2014) Seedless synthesis of high aspect ratio gold nanorods with high yield. J Mater Chem A 2:3528–3535CrossRefGoogle Scholar
  23. 23.
    Ali M, Snyder B, El-Sayed MA (2012) Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 28:9807–9815CrossRefGoogle Scholar
  24. 24.
    Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870CrossRefGoogle Scholar
  25. 25.
    Murphy CJ, Thompson LB, Alkilany AM et al (2010) The many faces of gold nanorods. J Phys Chem Lett 1:2867–2875CrossRefGoogle Scholar
  26. 26.
    Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994CrossRefGoogle Scholar
  27. 27.
    Gold* AND nanorod*. Web of Science, Thomson Reuters: Philadelphia. Accessed 11 Nov 2014Google Scholar
  28. 28.
    Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater 16:3633–3640CrossRefGoogle Scholar
  29. 29.
    Jiang XC, Pileni MP (2007) Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloid Surf A 295:228–232CrossRefGoogle Scholar
  30. 30.
    Perez-Juste J, Liz-Marzan LM, Carnie S et al (2004) Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv Funct Mater 14:571–579CrossRefGoogle Scholar
  31. 31.
    Smith DK, Miller NR, Korgel BA (2009) Iodide in CTAB prevents gold nanorod formation. Langmuir 25:9518–9524CrossRefGoogle Scholar
  32. 32.
    Rayavarapu RG, Ungureanu C, Krystek P et al (2010) Iodide impurities in hexadecyltrimethyl ammonium bromide (CTAB) products: lot-lot variations and influence on gold nanorod synthesis. Langmuir 26:5050–5055CrossRefGoogle Scholar
  33. 33.
    Edgar JA, McDonagh AM, Cortie MB (2012) Formation of gold nanorods by a stochastic “popcorn” mechanism. ACS Nano 6:1116–1125CrossRefGoogle Scholar
  34. 34.
    Park K, Drummy LF, Wadams RC et al (2013) Growth mechanism of gold nanorods. Chem Mater 25:555–563CrossRefGoogle Scholar
  35. 35.
    Almora-Barrios N, Novell-Leruth G, Whiting P et al (2014) Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano Lett 14:871–875CrossRefGoogle Scholar
  36. 36.
    Ye X, Jin L, Caglayan H et al (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817CrossRefGoogle Scholar
  37. 37.
    Ye XC, Zheng C, Chen J et al (2013) Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett 13:765–771CrossRefGoogle Scholar
  38. 38.
    Ye XC, Gao YZ, Chen J et al (2013) Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett 13:2163–2171CrossRefGoogle Scholar
  39. 39.
    Vigderman L, Zubarev ER (2013) High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem Mater 25:1450–1457CrossRefGoogle Scholar
  40. 40.
    Xiang YJ, Wu XC, Liu DF et al (2008) Tuning the morphology of gold nanocrystals by switching the growth of {110} facets from restriction to preference. J Phys Chem C 112:3203–3208CrossRefGoogle Scholar
  41. 41.
    Kozek KA, Kozek KM, Wu WC et al (2013) Large-scale synthesis of gold nanorods through continuous secondary growth. Chem Mater 25:4537–4544CrossRefGoogle Scholar
  42. 42.
    Cobley CM, Chen JY, Cho EC et al (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56CrossRefGoogle Scholar
  43. 43.
    Liu X, Huang N, Li H et al (2014) Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy. ACS Appl Mater Interfaces 6:5657–5668CrossRefGoogle Scholar
  44. 44.
    Alkilany AM, Shatanawi A, Kurtz T et al (2012) Toxicity and cellular uptake of gold nanorods in vascular endothelium and smooth muscles of isolated rat blood vessel: importance of surface modification. Small 8:1270–1278CrossRefGoogle Scholar
  45. 45.
    Boca SC, Astilean S (2010) Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Nanotechnology 21:235601CrossRefGoogle Scholar
  46. 46.
    Xiao Y, Hong H, Matson VZ et al (2012) Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2:757–768CrossRefGoogle Scholar
  47. 47.
    Black KC, Kirkpatrick ND, Troutman TS et al (2008) Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol Imaging 7:50–57Google Scholar
  48. 48.
    Yamashita S, Fukushima H, Akiyama Y et al (2011) Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Bioorg Med Chem 19:2130–2135CrossRefGoogle Scholar
  49. 49.
    Jang B, Park JY, Tung CH et al (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094CrossRefGoogle Scholar
  50. 50.
    Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17:1325–1330CrossRefGoogle Scholar
  51. 51.
    Xu L, Liu Y, Chen Z et al (2012) Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 12:2003–2012CrossRefGoogle Scholar
  52. 52.
    Alkilany AM, Thompson LB, Boulos SP et al (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199CrossRefGoogle Scholar
  53. 53.
    Alkilany AM, Nagaria PK, Wyatt MD et al (2010) Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation. Langmuir 26:9328–9333CrossRefGoogle Scholar
  54. 54.
    Huang J, Jackson KS, Murphy CJ (2012) Polyelectrolyte wrapping layers control rates of photothermal molecular release from gold nanorods. Nano Lett 12:2982–2987CrossRefGoogle Scholar
  55. 55.
    Qiu Y, Liu Y, Wang L et al (2010) Surface chemistry and aspect ratio mediated cellular up-take of Au nanorods. Biomaterials 31:7606–7619CrossRefGoogle Scholar
  56. 56.
    Lee SE, Sasaki DY, Perroud TD et al (2009) Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA. J Am Chem Soc 131:14066–14074CrossRefGoogle Scholar
  57. 57.
    Orendorff CJ, Alam TM, Sasaki DY et al (2009) Phospholipid-gold nanorod composites. ACS Nano 3:971–983CrossRefGoogle Scholar
  58. 58.
    Kah JC, Zubieta A, Saavedra RA et al (2012) Stability of gold nanorods passivated with amphiphilic ligands. Langmuir 28:8834–8844CrossRefGoogle Scholar
  59. 59.
    Chen YS, Frey W, Kim S et al (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348–354CrossRefGoogle Scholar
  60. 60.
    Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8:369–373CrossRefGoogle Scholar
  61. 61.
    Choi E, Kwak M, Jang B et al (2013) Highly monodisperse rattle-structured nanomaterials with gold nanorod core-mesoporous silica shell as drug delivery vehicles and nanoreactors. Nanoscale 5:151–154CrossRefGoogle Scholar
  62. 62.
    Slowing II, Vivero-Escoto JL, Wu CW et al (2008) Mesoporous silica nanoparticles as con-trolled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288CrossRefGoogle Scholar
  63. 63.
    Zhang ZJ, Wang LM, Wang J et al (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24:1418–1423CrossRefGoogle Scholar
  64. 64.
    Huang P, Bao L, Zhang C et al (2011) Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32:9796–9809CrossRefGoogle Scholar
  65. 65.
    Zhang Y, Qian J, Wang D et al (2013) Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew Chem Int Ed 52:1148–1151CrossRefGoogle Scholar
  66. 66.
    Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41CrossRefGoogle Scholar
  67. 67.
    Link S, El-Sayed MA, Mohamed MB (2005) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 109:10531–10532CrossRefGoogle Scholar
  68. 68.
    Sprunken DP, Omi H, Furukawa K et al (2007) Influence of the local environment on determining aspect-ratio distributions of gold nanorods in solution using Gans theory. J Phys Chem C 111:14299–14306CrossRefGoogle Scholar
  69. 69.
    Xu XB, Li HF, Hasan D et al (2013) Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater 23:4332–4338CrossRefGoogle Scholar
  70. 70.
    Blackie EJ, Le Ru EC, Etchegoin PG (2009) Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules. J Am Chem Soc 131:14466–14472CrossRefGoogle Scholar
  71. 71.
    Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106CrossRefGoogle Scholar
  72. 72.
    Orendorff CJ, Gearheart L, Jana NR et al (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8:165–170CrossRefGoogle Scholar
  73. 73.
    Mooradia A (1969) Photoluminescence of metals. Phys Rev Lett 22:185–187CrossRefGoogle Scholar
  74. 74.
    Mohamed MB, Volkov V, Link S et al (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523CrossRefGoogle Scholar
  75. 75.
    Imura K, Nagahara T, Okamoto H (2005) Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B 109:13214–13220CrossRefGoogle Scholar
  76. 76.
    Varnavski OP, Mohamed MB, El-Sayed MA et al (2003) Relative enhancement of ultrafast emission in gold nanorods. J Phys Chem B 107:3101–3104CrossRefGoogle Scholar
  77. 77.
    Wang HF, Huff TB, Zweifel DA et al (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci U S A 102:15752–15756CrossRefGoogle Scholar
  78. 78.
    Song J, Pu L, Zhou J et al (2013) Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7:9947–9960CrossRefGoogle Scholar
  79. 79.
    Funston AM, Novo C, Davis TJ et al (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658CrossRefGoogle Scholar
  80. 80.
    Huang H, Wang JH, Jin W et al (2014) Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance. Small 10:4012–4019CrossRefGoogle Scholar
  81. 81.
    Bardhan R, Grady NK, Cole JR et al (2009) Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3:744–752CrossRefGoogle Scholar
  82. 82.
    Jain PK, Huang WY, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088CrossRefGoogle Scholar
  83. 83.
    Maier SA, Kik PG, Atwater HA et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232CrossRefGoogle Scholar
  84. 84.
    Ge JC, Lan MH, Zhou BJ et al (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:1–8Google Scholar
  85. 85.
    Vankayala R, Sagadevan A, Vijayaraghavan P et al (2011) Metal nanoparticles sensitize the formation of singlet oxygen. Angew Chem Int Ed 50:10640–10644CrossRefGoogle Scholar
  86. 86.
    Zhao T, Shen X, Li L et al (2012) Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. Nanoscale 4:7712–7719CrossRefGoogle Scholar
  87. 87.
    Jiang CF, Zhao TT, Yuan PY et al (2013) Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles. ACS Appl Mater Interfaces 5:4972–4977CrossRefGoogle Scholar
  88. 88.
    Vankayala R, Kuo CL, Sagadevan A et al (2013) Morphology dependent photosensitization and formation of singlet oxygen ((1)Delta(g)) by gold and silver nanoparticles and its application in cancer treatment. J Mater Chem B 1:4379–4387CrossRefGoogle Scholar
  89. 89.
    Vankayala R, Huang YK, Kalluru P et al (2014) First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small 10:1612–1622CrossRefGoogle Scholar
  90. 90.
    Yang JP, Shen DK, Zhou L et al (2014) Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Adv Healthc Mater 3:1620–1628CrossRefGoogle Scholar
  91. 91.
    Jung Y, Reif R, Zeng YG et al (2011) Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes. Nano Lett 11:2938–2943CrossRefGoogle Scholar
  92. 92.
    Huang X, El-Sayed IH, Qian W et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  93. 93.
    Durr NJ, Larson T, Smith DK et al (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7:941–945CrossRefGoogle Scholar
  94. 94.
    Wang L, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462CrossRefGoogle Scholar
  95. 95.
    Jokerst JV, Cole AJ, Van de Sompel D et al (2012) Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6:10366–10377CrossRefGoogle Scholar
  96. 96.
    Jokerst JV, Thangaraj M, Kempen PJ et al (2012) Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6:5920–5930CrossRefGoogle Scholar
  97. 97.
    Li WY, Brown PK, Wang L et al (2011) Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media Mol Imaging 6:370–377CrossRefGoogle Scholar
  98. 98.
    Sheng ZH, Song L, Zheng JX et al (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243CrossRefGoogle Scholar
  99. 99.
    Huang XH, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910CrossRefGoogle Scholar
  100. 100.
    Zhang Z, Wang J, Nie X et al (2014) Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc 136:7317–7326CrossRefGoogle Scholar
  101. 101.
    Wang YC, Black K, Luehmann H et al (2013) Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7:2068–2077CrossRefGoogle Scholar
  102. 102.
    Tsai MF, Chang SH, Cheng FY et al (2013) Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 7:5330–5342CrossRefGoogle Scholar
  103. 103.
    Huang X, Tian XJ, Yang WL et al (2013) The conjugates of gold nanorods and chlorin e6 for enhancing the fluorescence detection and photodynamic therapy of cancers. Phys Chem Chem Phys 15:15727–15733CrossRefGoogle Scholar
  104. 104.
    Wang J, Zhu GZ, You MX et al (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6:5070–5077CrossRefGoogle Scholar
  105. 105.
    Srivatsan A, Jenkins SV, Jeon M et al (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 4:163–174CrossRefGoogle Scholar
  106. 106.
    Wang L, Lin X, Wang J et al (2014) Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv Funct Mater 24:4229–4239CrossRefGoogle Scholar
  107. 107.
    Kochuveedu ST, Kim DH (2014) Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale 6:4966–4984CrossRefGoogle Scholar
  108. 108.
    Li Y, Wen T, Zhao R et al (2014) Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8:11529–11542CrossRefGoogle Scholar
  109. 109.
    Shi Z, Ren W, Gong A et al (2014) Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low power density photodynamic therapy. Biomaterials 35:7058–7067CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Division of Functional Materials and Nano Devices, Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS)NingboPeople’s Republic of China

Personalised recommendations