Skip to main content

Sugar Accumulation in Tomato Fruit and Its Modification Using Molecular Breeding Techniques

  • Chapter
  • First Online:
Functional Genomics and Biotechnology in Solanaceae and Cucurbitaceae Crops

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 70))

Abstract

Fruit sweetness is one of the most important properties for both fresh and processed tomatoes (Solanum lycopersicum L.). Previously, development of varieties with high sugar content has primarily depended on organoleptic assessments by breeders because of insufficient information regarding the biological mechanism(s) controlling fruit sweetness. However, during the last two decades, research on fruit metabolic physiology and functional genomics has produced substantial progress in tomato. Among sugar-metabolic enzymes, acid invertase rather than sucrose synthase has been known to be involved in regulation of fruit sugar level and its composition. On the other hand, recent studies have revealed that proteins which are not directly related to sugar metabolism such as sucrose transporter, starch biosynthetic enzyme, and vacuolar processing enzyme affect on sugar level and its composition in tomato fruit. In this chapter, those new findings reported by recent studies are introduced, and then the possibility of molecular breeding for the modification of sugar content and composition in tomato fruit will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariizumi T, Higuchi K, Arakaki S, Sano T, Asamizu E, Ezura H (2011) Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits. J Exp Bot 62:2773–2786

    Article  CAS  PubMed  Google Scholar 

  • Balibrea ME, Santa Cruz AM, Bolarín M, Pérez-Alfocea F (1996) Sucrolytic activities in relation to sink strength and carbohydrate composition in tomato fruit growing under salinity. Plant Sci 118:47–55

    Article  CAS  Google Scholar 

  • Balibrea ME, Martinez-Andújar C, Cuartero J, Bolarín M, Pérez-Alfocea F (2006) The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism. Funct Plant Biol 33:279–288

    Article  CAS  Google Scholar 

  • Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB (2000) SUT2, a putative sucrose sensor in sieve elements. Plant Cell 12:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroja-Fernández E, Muñoza FJ, Lia J, Bahajia A, Almagroa G, Monteroa M, Etxeberriac E, Hidalgoa M, Sesmaa MT, Pozueta-Romero J (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA 109:321–326

    Article  PubMed  Google Scholar 

  • Baxter CJ, Carrari F, Bauke A, Overy S, Hill SA, Quick PW, Fernie AR, Sweetlove LJ (2005) Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids. Plant Cell Physiol 46:425–437

    Article  CAS  PubMed  Google Scholar 

  • Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142:1380–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Chen BY, Janes HW (1997) Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit. Plant Physiol 113:235–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BY, Janes HW, Gianfagna T (1998) PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNA from tomato. Plant Sci 6:59–67

    Article  Google Scholar 

  • Chengappa S, Guilleroux M, Wendy P, Shields R (1999) Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit. Plant Mol Biol 40:213–221

    Article  CAS  PubMed  Google Scholar 

  • D’Aoust MA, Yelle S, Nguyen-Quoc B (1999) Antisense inhibition of tomato fruit sucrose synthase decrease fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11:2407–2418

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies JN, Cocking EC (1965) Changes in carbohydrates, proteins and nucleic acids during cellular development in tomato fruit locule tissue. Planta 67:242–253

    Article  CAS  Google Scholar 

  • Dinar M, Stevens MA (1981) The relationship between starch accumulation and soluble solids content of tomato fruits. J Am Soc Hortic Sci 106:415–418

    CAS  Google Scholar 

  • Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman E, Zamir D (2003) Functional divergence of a syntenic invertase gene family in tomato, potato and Arabidopsis. Plant Physiol 131:603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman E, Liu YS, Carmel-Goren L, Shoresh AGM, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Gen Genomics 266:821–826

    Article  CAS  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, López J, Pétiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids, and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Godt D, Roitsch T (1997) Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiol 115:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz M, Godt D, Roitsch T (2000) Tissue-specific induction of the mRNA for an extracellular invertase isoenzyme of tomato by brassinosteroids suggests a role for steroid hormones in assimilate partitioning. Plant J 22:515–522

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Nonaka S, Yin YG, Koiwa T, Asamizu E, EzuraH MC (2013) Isolation and characterisation of the ADP-glucose pyrophosphorylase small subunit gene (AgpS1) promoter in tomato (Solanum lycopersicum L.). Plant Biotechnol 30:279–286

    Article  CAS  Google Scholar 

  • Hackel A, Schauer N, Carrari F, Fernie AR, Grimm B, Kühn C (2006) Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J 45:180–192

    Article  CAS  PubMed  Google Scholar 

  • Hara-Nishimura I, Inoue K, Nishimura M (1991) A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 294:89–93

    Article  CAS  PubMed  Google Scholar 

  • Ho LC (1996) The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. J Exp Bot 47:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Ho LC, Hewitt JD (1986) Fruit development. In: Atherton JG, Rudich J (eds) The tomato crop. Chapman and Hall, London, pp 201–240

    Chapter  Google Scholar 

  • Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K (2004) Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell 16:3437–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husain SE, James C, Shields R, Foyer CH (2001) Manipulation of fruit sugar composition but not content in Lycopersicon esculentum fruit by introgression of an acid invertase gene from Lycopersicon pimpinellifolium. New Phytol 150:65–72

    Article  CAS  Google Scholar 

  • Jin Y, Ni DA, Ruan YL (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21:2072–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latché A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613

    Article  CAS  PubMed  Google Scholar 

  • Just D, Garcia V, Fernandez L, Bres C, Mauxion JP, Petit J, Jorly J, Assali J, Bournonville C, Ferrand C, Baldet P, Lemaire-Chamley M, Mori K, Okabe Y, Ariizumi T, Asamizu E, Ezura H, Rothan C (2013) Micro-Tom mutants for functional analysis of target genes and discovery of new alleles in tomato. Plant Biotechnol 30:225–231

    Article  CAS  Google Scholar 

  • Klann EM, Chetelat RT, Bennett AB (1993) Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol 103:863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XY, Xing JP, Thomas JG, Harry JW (2002) Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits. Plant Sci 162:239–244

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Palmer WM, Martin AP, Wang R, Rainsford F, Jin Y, Patrick JW, Yang Y, Ruan YL (2012) High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot 63:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Lin TP, Caspar T, Somerville C, Preiss J (1988) A starch-deficient mutant of Arabidopsis thaliana with low ADP-glucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol 88:1175–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miron D, Petreikov M, Carmi N, Shen S, Levin I, Granot D, Zamski E, Schaffer AA (2002) Sucrose uptake, invertase localization and gene expression in developing fruit of Lycopersicon esculentum and the sucrose-accumulating Lycopersicon hirsutum. Physiol Plant 115:35–47

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa Y, Sakai A, Miyagishima S, Takano H, Kawano S, Kuroiwa T (1999) Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured bright yellow-2 tobacco cells. Plant Physiol 121:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morell MK, Bloom M, Knowles V, Preiss J (1987) Subunit structure of Spinach leaf ADP glucose pyrophosphorylase. Plant Physiol 85:182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Röber B, Kossamann J, Hannah LC, Willmitzer L, Sonnewald U (1990) One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genomics 224:136–146

    Google Scholar 

  • Müller-Röber B, Sonnewald U, Willmitzer L (1992) Inhibition of ADP-glucose pyrophosphorylase leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11:1229–1238

    PubMed  PubMed Central  Google Scholar 

  • N’tchobo H, Dali N, Nguyen-Quoc B, Foyer CH, Yelle S (1999) Starch synthesis in tomato remains constant throughout fruit development and is dependent on sucrose supply and sucrose synthase activity. J Exp Bot 50:1457–1463

    Article  Google Scholar 

  • Nguyen-Quoc B, Foyer CH (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TH, Krapp A, Röper-Schwarz U, Stitt M (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP-glucose pyrophosphorylase is modified by nitrogen and phosphate. Plant Cell Environ 21:443–455

    Article  CAS  Google Scholar 

  • Ohyama A, Ito H, Sato T, Nishimura S, Imai T, Hirai M (1995) Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit. Plant Cell Physiol 36:369–376

    Article  CAS  Google Scholar 

  • Ohyama A, Nishimura S, Hirai M (1998) Cloning of cDNA for a cell wall-bound acid invertase from tomato (Lycopersicon esculentum) and expression of soluble and cell wall-bound invertases in plants and wounded leaves of L. esculentum and L. peruvianum. Genes Genet Syst 73:149–157

    Article  CAS  PubMed  Google Scholar 

  • Ohyama A, Suwabe K, Nunome T, Fukuoka H (2006) Characterization of the promoter of the Wiv-1(Lin6) gene encoding a wound-inducible cell wall-bound acid invertase in tomato. Plant Biotechnol 23:365–371

    Article  CAS  Google Scholar 

  • Okabe Y, Asamizu E, Saito T, Matsukura C, Ariizumi T, Bres C, Rothan C, Mizoguchi T, Ezura H (2011) Tomato TILLING technology: development of a reverse genetics tool for the efficient isolation of mutants from Micro-Tom mutant libraries. Plant Cell Physiol 52:1994–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okita TW, Nakata PA, Anderson JM, Sowokinos J, Morell M, Preiss J (1990) The subunit structure of potato tuber ADP-glucose pyrophosphorylase. Plant Physiol 93:785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SW, Chung WI (1998) Molecular cloning and organ-specific expression of three isoforms of tomato ADP-glucose pyrophosphorylase gene. Gene 206:215–221

    Article  CAS  PubMed  Google Scholar 

  • Petreikov M, Shen S, Yeselson Y, Levin I, Bar M, Schaffer AA (2006) Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit. Planta 224:1465–1479

    Article  CAS  PubMed  Google Scholar 

  • Preiss J (1988) Biosynthesis of starch and its regulation. In: Preiss J (ed) The biochemistry of plants, vol 14. Academic, San Diego, CA, pp 181–254

    Chapter  Google Scholar 

  • Prudent M, Causse M, Génard M, Tripodi P, Grandillo S, Bertin N (2009) Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection. J Exp Bot 60:923–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prudent M, Lecomte A, Bouchet JP, Bertin N, Causse M, Genard M (2011) Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. J Exp Bot 62:907–919

    Article  CAS  PubMed  Google Scholar 

  • Rausch T, Greiner S (2004) Plant protein inhibitors of invertases. Biochim Biophys Acta 16962:253–261

    Article  Google Scholar 

  • Reca IB, Brutus A, D’Avino R, Villard C, Bellincampi D, Giardina T (2008) Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie 90:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Sivitz AB, Ward JM (2012) Evolution of plant sucrose uptake transporters. Front Plant Sci 3:2–12

    Article  Google Scholar 

  • Robinson NL, Hewitt JD, Bennett AB (1988) Sink metabolism in tomato fruit. I. Developmental changes in carbohydrate metabolizing enzymes. Plant Physiol 87:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roitsch T, González MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Rojo E, Zouhar J, Carter C, Kovaleva V, Raikhel NV (2003) A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:7389–7394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar M, Chervin C, Mila I, Hao Y, Roustan JP, Benichou M, Gibon Y, Biais B, Maury P, Latché A, Pech JC, Bouzayen M, Zouine M (2013) SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol 161:1362–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer AA, Petreikov M (1997) Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol 113:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer AA, Levin I, Ogus I, Petreikov M, Cincarevsky F, Yeselson E, Shen S, Gilboa N, Bar M (2000) ADP-glucose pyrophosphorylase activity and starch accumulation in immature tomato fruit: the effect of a Lycopersicon hirsutum-derived introgression encoding for the large subunit. Plant Sci 152:135–144

    Article  CAS  Google Scholar 

  • Scheible WR, Gonzàlez-Fontes A, Lauerer M, Müller-Röber B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha AK, Hofmann MG, Römer U, Köckenberger W, Elling L, Roitsch T (2002) Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiol 128:1480–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolov LN, Dejardin A, Kleczkowski LA (1998) Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem J 336:681–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant tissues by ADP-glucose pyrophosphorylase. Science 258:287–292

    Article  CAS  PubMed  Google Scholar 

  • Stark DM, Barry GF, Kishore GM (1996) Improvement of fruit quality traits through enhancement of starch biosynthesis. Ann N Y Acad Sci 792:26–36

    Article  CAS  Google Scholar 

  • Sturm A (1999) Invertases. primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Loboda T, Sung S-JS, Black CC (1992) Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol 98:1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Tomato Genome Consortium (TGC) (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Kim Y, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai CY, Nelson OE (1966) Starch-deficient maize mutant lacking adenosine diphosphate glucose pyrophosphorylase activity. Science 151:341–343

    Article  CAS  PubMed  Google Scholar 

  • Unger C, Hardegger M, Lienhard S, Sturm A (1994) cDNA cloning of carrot (Daucus carota) soluble acid, 6-fructofuranosidases and comparison with the cell wall isoenzyme. Plant Physiol 104:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weise A, Barker L, Kühn C, Lalonde S, Buschmann H, Frommer WB, Ward JM (2000) A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell 12:1345–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing J, Li X, Luo Y, Gianfagna TJ, Janes HW (2005) Isolation and expression analysis of two tomato ADP-glucose pyrophosphorylase S(large)subunit gene promoters. Plant Sci 169:882–893

    Article  CAS  Google Scholar 

  • Yelle S, Hewitt JD, Nieder M, Robinson NL, Damon S, Bennett AB (1988) Sink metabolism in tomato fruit. III. Analysis of carbohydrate assimilation in a wild species. Plant Physiol 87:731–736

    Article  Google Scholar 

  • Yin YG, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sugaya S, Matsukura C (2010) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. J Exp Bot 61:563–574

    Article  CAS  PubMed  Google Scholar 

  • Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kühn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR (2009) RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 150:1204–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Matsukura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsukura, C. (2016). Sugar Accumulation in Tomato Fruit and Its Modification Using Molecular Breeding Techniques. In: Ezura, H., Ariizumi, T., Garcia-Mas, J., Rose, J. (eds) Functional Genomics and Biotechnology in Solanaceae and Cucurbitaceae Crops. Biotechnology in Agriculture and Forestry, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48535-4_9

Download citation

Publish with us

Policies and ethics