Skip to main content

Ionic Liquids for Extraction Processes in Refinery-Related Applications

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Ionic liquids are being investigated to improve many of the petrochemical industry stages, ranging from the extraction of crude oil from wells to the obtaining of added value products. The goal is to get more efficient, safe and environmentally benign processes. In this chapter, the possible role of ionic liquids to improve the extraction units in refinery-related applications is considered. These salts are being tested to improve the current separation processes of refineries (deasphalting, metal removal, aromatics extraction, etc.) or as alternatives to other processes (desulfurisation, denitrogenation, etc.). The most recent studies are considering the possibility of using ionic liquids for enhanced oil recovery, for instance, the recovery of bitumen from oil sands or the use of surfactant ionic liquids in chemical oil recovery. Most of the studies consist, at this moment, of only theoretical research. However, it is expected that they become an industrial reality, as it has been the case with the Hycapure-Hg process for mercury removal from natural gas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Devold H (2013) Oil and gas production handbook. An introduction to oil and gas production, transport, refining and petrochemical industry, 3rd edn. ABB, Oslo

    Google Scholar 

  2. McKetta JJ (1992) Petroleum processing handbook. Marcel Dekker, New York

    Google Scholar 

  3. Painter P, Williams P, Mannebach E, Lupinsky A (2014) Analogue ionic liquids for the separation and recovery of hydrocarbons from particulate matter US Patent 0054200 A1

    Google Scholar 

  4. Painter P, Williams P, Mannebach E (2010) Recovery of bitumen from oil or tar sands using ionic liquids. Energy Fuel 24:1094–1098

    Article  CAS  Google Scholar 

  5. Painter P, Williams P, Lupinsky A (2010) Recovery of bitumen from Utah tar sands using ionic liquids. Energy Fuel 24:5081–5088

    Article  CAS  Google Scholar 

  6. Thomas S (2008) Enhanced oil recovery. An overview. Oil Gas Sci Technol 63:9–59

    Article  CAS  Google Scholar 

  7. Sheng JJ (2011) Modern chemical enhanced oil recovery. Theory and practice. Elsevier, Amsterdam

    Google Scholar 

  8. Speight JG (2009) Enhanced oil recovery methods for heavy oil and tar sands. GULF Publishing Company, Houston

    Google Scholar 

  9. Santanna VC, Silva ACM, Lopes HM, Sampaio-Neto FA (2013) Microemulsion flow in porous medium for enhanced oil recovery. J Petrol Sci Eng 105:116–120

    Article  CAS  Google Scholar 

  10. Collins IR, Earle MJ, Exton SP, Plechkova NV, Seddon KR (2006) Ionic liquids and uses thereof. WO Patent 111712 A2

    Google Scholar 

  11. Hezave AZ, Dorostkar S, Ayatollahi S, Nabipour M, Hemmateenejad B (2013) Investigating the effect of ionic liquid (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl])) on the water/oil interfacial tension as a novel surfactant. Colloid Surf: Physicochem Eng Asp 421:63–71

    Article  CAS  Google Scholar 

  12. Hezave AZ, Dorostkar S, Ayatollahi S, Nabipour M, Hemmateenejad B (2013) Dynamic interfacial tension behavior between heavy crude oil and ionic liquid solution (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]) + distilled or saline water/heavy crude oil) as a new surfactant. J Mol Liq 187:83–89

    Article  CAS  Google Scholar 

  13. Hezave AZ, Dorostkar S, Ayatollahi S, Nabipour M, Hemmateenejad B (2013) Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactant on interfacial tension of water/crude oil system. Fluid Phase Equilib 360:139–145

    Article  Google Scholar 

  14. Benzagouta MS, AlNashef IM, Karnanda W, Al-Khidir K (2013) Ionic liquids as novel surfactants for potential use in enhanced oil recovery. Korean J Chem Eng 30:2108–2117

    Article  CAS  Google Scholar 

  15. Bin-Dahbag MS, Al Quraishi AA, Benzagouta MS, Kinawy MM, Al Nashef IM, AI-Mushaegeh E (2014) Experimental study of use of ionic liquids in enhanced oil recovery. J Pet Environ Biotechnol 4:165–172

    Google Scholar 

  16. Lago S, Rodríguez H, Khoshkbarchi MK, Soto A, Arce A (2012) Enhanced oil recovery using the ionic liquid trihexyl(tetradecyl)phosphonium chloride: phase behaviour and properties. RSC Adv 2:9392–9397

    Article  CAS  Google Scholar 

  17. Lago S, Francisco M, Soto A, Arce A (2013) Enhanced oil recovery with the ionic liquid trihexyl(tetradecyl)phosphonium chloride: a phase equilibria study at 75 °C. Energy Fuel 27:5806–5810

    Article  CAS  Google Scholar 

  18. Spinelli LS, Aquino AS, Pires RV, Barboza EM, Louvisse AMT, Lucas EF (2007) Influence of polymer bases on the synergistic effects obtained from mixtures of additives in the petroleum industry: performance and residue formation. J Petrol Sci Eng 58:111–118

    Article  CAS  Google Scholar 

  19. Flores-Oropeza EA, Castro-Sotelo LV, López-Ortega A, Hernández-Cortez JG, Álvarez-Ramírez F, Vázquez-Moreno FS, Estrada-Martínez A, Lozada y Cassou M (2012) Dehydrating and desalting median, heavy and extra-heavy oils using ionic liquids and their formulations US Patent 0255886 A1

    Google Scholar 

  20. Guzmán-Lucero D, Flores P, Rojo T, Martínez-Palou R (2010) Ionic liquids as demulsifiers of water-in-crude oil emulsions: study of the microwave effect. Energy Fuel 24:3610–3615

    Article  Google Scholar 

  21. Meindersma GW, de Haan AB (2013) Separation processes with ionic liquids. In: Plechkova NV, Seddon KR (eds) Ionic liquids unCoiled. Critical expert overviews. Wiley, Hoboken

    Google Scholar 

  22. Anderson K, Hussain A, Atkins M, Basar J (2014) A process for desalting crude oil. WO Patent 016425 A1

    Google Scholar 

  23. Serban M, Bhattacharyya A, Mezza BJ, Vanden Bussche KM, Nicholas CP, Bennion WK (2011) Process for removing metals from crude oil. WO Patent 090610 A2

    Google Scholar 

  24. Abai M, Atkins MP, Cheun KY, Holbrey J, Nockemann P, Seddon KR, Srinivasan G, Zou Y (2012) Process for removing metals from hydrocarbons. WO Patent 046057 A2

    Google Scholar 

  25. European Commission (2003) Integrated pollution prevention and control. Reference document on best available techniques for mineral oil and gas refineries.

    Google Scholar 

  26. Forestiere A, Cadours R, Vallee C (2011) Ether production method involving alcohol separation by an ionic liquid. US Patent 0021847 A1

    Google Scholar 

  27. Arce A, Rodríguez H, Soto A (2006) Purification of ethyl tert-butyl ether from its mixtures with ethanol by using an ionic liquid. Chem Eng J 115:219–223

    Article  CAS  Google Scholar 

  28. Arce A, Rodríguez H, Soto A (2006) Effect of anion fluorination in 1-ethyl-3-methylimidazolium as solvent for the liquid extraction of ethanol from ethyl tert-butyl ether. Fluid Phase Equilib 242:164–168

    Article  CAS  Google Scholar 

  29. Arce A, Rodríguez H, Soto A (2007) Use of a green and cheap ionic liquid to purify gasoline octane boosters. Green Chem 9:247–253

    Article  CAS  Google Scholar 

  30. Azizov AHO, Aliyeva RVG, Bagirova SRG, Kalbaliyeva ESG, Amanullayeva CIG, Azizbeili HRG, Mammadi RZG (2010) Method of selective purification of alkyl-tert-alkyl ethers by ionic liquid. WO Patent 040191 A2

    Google Scholar 

  31. Wauquier JP (2000) Petroleum refining 2. Separation processes. Technip (IFP Publications), Paris

    Google Scholar 

  32. Harmsen GJ, De With J (2011) Process for separation of aromatic compounds from a mixture. WO Patent 026975 A1

    Google Scholar 

  33. Ferreira AR, Freire MG, Ribeiro JC, Lopes FM, Crespo JG, Countinho JAP (2012) Overview of the liquid-liquid equilibria of ternary systems composed of ionic liquid and aromatic and aliphatic hydrocarbons, and their modeling by COSMO-RS. Ind Eng Chem Res 51:3483–3507

    Article  CAS  Google Scholar 

  34. Meindersma GW, de Haan AB (2012) Cyano-containing ionic liquids for the extraction of aromatic hydrocarbons from an aromatic/aliphatic mixture. Sci China Chem 55:1488–1499

    Article  CAS  Google Scholar 

  35. Chen J, Duan LP, Mi JG, Fei WY, Li ZC (2000) Liquid-liquid equilibria of multi-component systems including n-hexane, n-octane, benzene, toluene, xylene and sulfolane at 298.15 K and atmospheric pressure. Fluid Phase Equilib 173:109–119

    Article  CAS  Google Scholar 

  36. Arce A, Earle MJ, Rodríguez H, Seddon KR (2007) Separation of aromatic hydrocarbons from alkanes using the ionic liquid 1-ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide. Green Chem 9:70–74

    Article  CAS  Google Scholar 

  37. Arce A, Earle MJ, Rodríguez H, Seddon KR (2007) Separation of benzene and hexane by solvent extraction with 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ionic liquids: effect of the alkyl-substituent length. J Phys Chem B 111:4732–4736

    Article  CAS  Google Scholar 

  38. González EJ, Calvar N, González NB, Domínguez A (2009) (Liquid + liquid) equilibria for ternary mixtures of (alkane + benzene + [EMpy][ESO4]) at several temperatures and atmospheric pressure. J Chem Thermodyn 41:1215–1221

    Article  Google Scholar 

  39. Ashcroft SJ, Clayton AD, Shearn RB (1982) Liquid-liquid equilibriums for three ternary and six quaternary systems containing sulfolane, n-heptane, toluene, 2-propanol, and water at 303.15 K. J Chem Eng Data 27:148–151

    Article  CAS  Google Scholar 

  40. Meindersma GW, Simons BTJ, de Haan AB (2011) Physical properties of 3-methyl-N-butylpyridinium tetracyanoborate and 1-butyl-1-methylpyrrolidinium tetracyanoborate and ternary LLE data of [3-mebupy]B(CN)4 with an aromatic and an aliphatic hydrocarbon at T = 303.2 K and 328.2 K and p = 0.1 MPa. J Chem Thermodyn 43:1628–1640

    Article  CAS  Google Scholar 

  41. Hansmeier AR, Ruiz MM, Meindersma GW, de Haan AB (2010) Liquid−liquid equilibria for the three ternary systems (3-Methyl-N-butylpyridinium Dicyanamide + Toluene + Heptane), (1-Butyl-3-methylimidazolium Dicyanamide + Toluene + Heptane) and (1-Butyl-3-methylimidazolium Thiocyanate + Toluene + Heptane) at T = (313.15 and 348.15) K and p = 0.1 MPa. J Chem Eng Data 55:708–713

    Article  CAS  Google Scholar 

  42. Meindersma GW, van Acker T, de Haan AB (2011) Physical properties of 3-methyl-N-butylpyridinium tricyanomethanide and ternary LLE data with an aromatic and an aliphatic hydrocarbon at T = (303.2 and 328.2) K and p = 0.1 MPa. Fluid Phase Equilib 307:30–36

    Article  CAS  Google Scholar 

  43. Bhattacharyya A, Serban M, Mezza BJ, Vanden Bussche KM, Nicholas CP, Kocal JA, Bennion WK (2011) Process for removing sulfur from vacuum gas oil. WO Patent 090611 A2

    Google Scholar 

  44. Koseoglu OR, Al-Hajji A (2011) Ionic liquid desulfurization process incorporated in a low pressure separator. WO Patent 119807 A1

    Google Scholar 

  45. Koseoglu OR, Al-Hajji A (2011) Ionic liquid desulfurization process incorporated in a contact vessel. WO Patent 119807 A1

    Google Scholar 

  46. Mello MDE, He Z, Verma A, Yeh S, Zhan BZ, Zhou Z (2012) Treatment of a hydrocarbon feed. WO Patent 015589 A2

    Google Scholar 

  47. Kulkarni PS, Afonso CAM (2010) Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chem 12:1139–1149

    Article  CAS  Google Scholar 

  48. Kowsary E (2013) Recent advances in the science and technology of desulfurization of diesel fuel using ionic liquids. In: Kadokawa J (ed) Ionic liquids – new aspects for the future. InTech, Croatia

    Google Scholar 

  49. Holbrey JD, López-Martín I, Rothenberg G, Seddon KR, Silvero G, Zheng X (2008) Desulfurisation of oils using ionic liquids: selection of cationic and anionic components to enhance extraction efficiency. Green Chem 10:87–92

    Article  CAS  Google Scholar 

  50. Alonso L, Arce A, Francisco M, Soto A (2008) Thiophene separation from aliphatic hydrocarbons using the 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Fluid Phase Equilib 270:97–102

    Article  CAS  Google Scholar 

  51. Alonso L, Arce A, Francisco M, Rodríguez O, Soto A (2007) Liquid-liquid equilibria for systems composed by 1-methyl-3-octylimidazolium tetrafluoroborate ionic liquid, thiophene and n-hexane or cyclohexane. J Chem Eng Data 52:1729–1732

    Article  CAS  Google Scholar 

  52. Rodríguez-Cabo B, Francisco M, Soto A, Arce A (2012) Hexyl dimethylpyridinium ionic liquids for desulfurization of fuels. Effect of the position of the alkyl side chains. Fluid Phase Equilib 314:107–112

    Article  Google Scholar 

  53. Mokhtarani B, Mansourzareh H, Reza-Mortaheb H (2014) Phase behavior of nitrate based ionic liquids with thiophene and alkanes. Ind Eng Chem Res 53:1256–1261

    Article  CAS  Google Scholar 

  54. Rodríguez-Cabo B, Soto A, Arce A (2013) Desulfurization of fuels by liquid-liquid extraction with 1-ethyl-3-methylimidazolium ionic liquids. Fluid Phase Equilib 356:126–135

    Article  Google Scholar 

  55. Rodríguez-Cabo B, Rodríguez H, Rodil E, Arce A, Soto A (2014) Extractive and oxidative-extractive desulfurization of fuels with ionic liquids. Fuel 117A:882–889

    Article  Google Scholar 

  56. Billimoria RM, Francisco MA, Siskin M (2008) Upgrading of of heavy hydrocarbons by the separation of asphaltenes using ionic liquids. WO Patent 124042 A1

    Google Scholar 

  57. Liu Y, Hu Y, Wang H, Xu C, Ji D, Sun Y, Guo T (2005) Ionic liquids: novel solvents for petroleum asphaltenes. Chin J Chem Eng 13:564–567

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soto, A. (2016). Ionic Liquids for Extraction Processes in Refinery-Related Applications. In: Rodríguez, H. (eds) Ionic Liquids for Better Separation Processes. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48520-0_3

Download citation

Publish with us

Policies and ethics