Advertisement

Introduction

Chapter
  • 543 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The traditional Fourier’s law of heat conduction is not applicable in ultrafast and ultrasmall conditions. Non-Fourier models thus have been developed to predict these anomalous heat conductions. This chapter reviews the present non-Fourier heat conduction theories. For ultrafast heat conduction, modification models such as the Cattaneo–Vernotte model, dual phase lag model, and hyperbolic two-step model are developed. The common feature of these models is adding the relaxation terms in the traditional Fourier’s law. For the steady non-Fourier heat conduction in nanosystems, the size effect of the thermal conductivity has been modeled from the phonon-boundary scattering perspective. On the other hand, the combination of non-Fourier conduction models with irreversible thermodynamics will give the negative entropy production, which violates the second law. The extended irreversible thermodynamics modifies the entropy production by extending the category of state variables to mend this paradox. At the end of this chapter, the approach and main aim of this work are presented.

Keywords

Heat Wave Effective Thermal Conductivity Mean Free Path Transient Heat Conduction Heat Conduction Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fourier J (1955) Analytical theory of heat. Dover Publications, New YorkzbMATHGoogle Scholar
  2. 2.
    Cattaneo C (1948) Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena 3:83–101Google Scholar
  3. 3.
    Vernotte P (1958) Paradoxes in the continuous theory of the heat equation. CR Acad Sci 246:3154–3155MathSciNetzbMATHGoogle Scholar
  4. 4.
    Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New YorkzbMATHGoogle Scholar
  5. 5.
    Hu RF, Cao BY (2009) Study on thermal wave based on the thermal mass theory. Sci China Series E Technol Sci 52(6):1786–1792zbMATHCrossRefGoogle Scholar
  6. 6.
    Körner C, Bergmann HW (1998) The physical defects of the hyperbolic heat conduction equation. Appl Phys A 67(4):397–401ADSCrossRefGoogle Scholar
  7. 7.
    Bai C, Lavine AS (1995) On hyperbolic heat conduction and the second law of thermodynamics. J Heat Transf 117(2):256–263CrossRefGoogle Scholar
  8. 8.
    Ackerman CC, Bertman B, Fairbank HA, Guyer RA (1966) Second sound in solid helium. Phys Rev Lett 16:789ADSCrossRefGoogle Scholar
  9. 9.
    Rogers SJ (1971) Transport of heat and approach to second sound in some isotopically pure Alkali-Halide crystals. Phys Rev B 3(4):1440ADSCrossRefGoogle Scholar
  10. 10.
    Jackson HE, Walker CT (1971) Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Phys Rev B 3(4):1428ADSCrossRefGoogle Scholar
  11. 11.
    Mason WP (1968) Physical acoustics: principles and methods, vol V. Academic Press, New York, pp 233–292Google Scholar
  12. 12.
    Ackerman CC (1968) Temperature pulses in dielectric solids. Ann Phys 50:128–185ADSCrossRefGoogle Scholar
  13. 13.
    Narayanamurti V, Dynes RC (1972) Observation of second sound in bismuth. Phys Rev Lett 28(22):1461ADSCrossRefGoogle Scholar
  14. 14.
    Joseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 61(1):41ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Guyer RA, Krumhansl JA (1966) Solution of the linearized phonon Boltzmann equation. Phys Rev 148(2):766–778ADSCrossRefGoogle Scholar
  16. 16.
    Guyer RA, Krumhansl JA (1966) Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys Rev 148(2):778ADSCrossRefGoogle Scholar
  17. 17.
    Eesley GL (1983) Observation of nonequilibrium electron heating in copper. Phys Rev Lett 51(23):2140–2143ADSCrossRefGoogle Scholar
  18. 18.
    Fujimoto JG, Ippen EP, Liu JM et al (1984) Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys Rev Lett 53:1837–1840ADSCrossRefGoogle Scholar
  19. 19.
    Eesley GL (1986) Generation of nonequilibrium electron and lattice temperatures in copper by picoseconds laser pulses. Phys Rev B 33(4):2144–2151ADSCrossRefGoogle Scholar
  20. 20.
    Schoenlein RW, Lin WZ, Fujimoto JG, Eesley GL (1987) Femtosecond studies of nonequilibrium electronic processes in metals. Phys Rev Lett 58(16):1680ADSCrossRefGoogle Scholar
  21. 21.
    Brorson SD, Fujimoto JG, Ippen EP (1987) Femtosecond electronic heat-transport dynamics in thin gold-films. Phys Rev Lett 59(17):1962–1965ADSCrossRefGoogle Scholar
  22. 22.
    Brorson SD, Kazeroonian A, Moodera JS et al (1990) Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors. Phys Rev Lett 64(18):2172ADSCrossRefGoogle Scholar
  23. 23.
    Sigel R, Tsakiris GD, Lavarenne F et al (1990) Experimental observation of laser-induced radiation heat waves. Phys Rev Lett 65(5):587ADSCrossRefGoogle Scholar
  24. 24.
    Wang JC, Guo CL (2007) Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals. Phys Rev B 75:184304ADSCrossRefGoogle Scholar
  25. 25.
    Wang HD, Ma WG, Zhang X, Wang W (2010) Measurement of the thermal wave in metal films using femtosecond laser thermoreflectance system. Acta Phys Sin 59(6):3856–3862Google Scholar
  26. 26.
    Qiu TQ, Tien CL (1993) Heat transfer mechanisms during short-pulse laser heating of metals. J Heat Transf 115(4):835–841CrossRefGoogle Scholar
  27. 27.
    Qiu TQ, Tien CL (1994) Femtosecond laser heating of multi-layer metals—I analysis. Int J Heat Mass Transf 37(17):2789–2797CrossRefGoogle Scholar
  28. 28.
    Qiu TQ, Tien CL (1994) Femtosecond laser heating of multi-layer metals—II experiments. Int J Heat Mass Transf 37(17):2799–2808CrossRefGoogle Scholar
  29. 29.
    Özişik MN, Tzou DY (1994) On the wave theory in heat conduction. J Heat Transf 116(3):526–535CrossRefGoogle Scholar
  30. 30.
    Tzou DY (1995) The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Transf 38(17):3231–3240CrossRefGoogle Scholar
  31. 31.
    Tzou DY (1996) Macro-to microscale heat transfer: the lagging behavior. Taylor & Francis, Washington, DCGoogle Scholar
  32. 32.
    Antaki PJ (1998) Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. Int J Heat Mass Transf 41:2253–2258zbMATHCrossRefGoogle Scholar
  33. 33.
    Tang DW, Araki N (1999) Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. Int J Heat Mass Transf 42:855–860zbMATHCrossRefGoogle Scholar
  34. 34.
    Xu M, Wang L (2002) Thermal oscillation and resonance in dual-phase-lagging heat conduction. Int J Heat Mass Transf 45(5):1055–1061zbMATHCrossRefGoogle Scholar
  35. 35.
    Xu M, Wang L (2005) Dual-phase-lagging heat conduction based on Boltzmann transport equation. Int J Heat Mass Transf 48(25):5616–5624zbMATHCrossRefGoogle Scholar
  36. 36.
    Shen B, Zhang P (2008) Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model. Int J Heat Mass Transf 51(7):1713–1727zbMATHCrossRefGoogle Scholar
  37. 37.
    Chen G (2001) Ballistic-diffusive heat-conduction equations. Phys Rev Lett 86(11):2297–2300ADSCrossRefGoogle Scholar
  38. 38.
    Christov CI, Jordan PM (2005) Heat conduction paradox involving second-sound propagation in moving media. Phys Rev Lett 94:154301ADSCrossRefGoogle Scholar
  39. 39.
    Müller I, Ruggeri T (1993) Extended thermodynamics. Springer, New YorkzbMATHCrossRefGoogle Scholar
  40. 40.
    Tsai DH, MacDonald RA (1976) Molecular-dynamical study of second sound in a solid excited by a strong heat pulse. Phys Rev B 14(10):4714ADSCrossRefGoogle Scholar
  41. 41.
    Volz S, Saulnier JB, Lallemand M et al (1996) Transient Fourier-law deviation by molecular dynamics in solid argon. Phys Rev B 54(1):340ADSCrossRefGoogle Scholar
  42. 42.
    Shiomi J, Maruyama S (2006) Non-Fourier heat conduction in a single-walled carbon nanotube: classical molecular dynamics simulations. Phys Rev B 73(20):205420ADSCrossRefGoogle Scholar
  43. 43.
    Hone J, Whitney M, Piskoti C et al (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59(4):R2514ADSCrossRefGoogle Scholar
  44. 44.
    Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613ADSCrossRefGoogle Scholar
  45. 45.
    Kim P, Shi L, Majumdar A et al (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87(21):215502ADSCrossRefGoogle Scholar
  46. 46.
    Pop E, Mann D, Wang Q et al (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100ADSCrossRefGoogle Scholar
  47. 47.
    Ghosh S, Calizo I, Teweldebrhan D et al (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911ADSCrossRefGoogle Scholar
  48. 48.
    Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907ADSCrossRefGoogle Scholar
  49. 49.
    Guo Z, Zhang D, Gong XG (2009) Thermal conductivity of graphene nanoribbons. Appl Phys Lett 95(16):163103ADSCrossRefGoogle Scholar
  50. 50.
    Asheghi M, Leung YK, Wong SS et al (1997) Phonon-boundary scattering in thin silicon layers. Appl Phys Lett 71(13):1798–1800ADSCrossRefGoogle Scholar
  51. 51.
    Ju YS, Goodson KE (1999) Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 74(20):3005–3007ADSCrossRefGoogle Scholar
  52. 52.
    Liu W, Asheghi M (2004) Phonon–boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett 84(19):3819–3821ADSCrossRefGoogle Scholar
  53. 53.
    Ju YS (2005) Phonon heat transport in silicon nanostructures. Appl Phys Lett 87(15):153106ADSCrossRefGoogle Scholar
  54. 54.
    Li D, Wu Y, Kim P et al (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934–2936ADSCrossRefGoogle Scholar
  55. 55.
    Hochbaum AI, Chen R, Delgado RD et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167ADSCrossRefGoogle Scholar
  56. 56.
    Boukai AI, Bunimovich Y, Tahir-Kheli J et al (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–171ADSCrossRefGoogle Scholar
  57. 57.
    Lee SM, Cahill DG, Venkatasubramanian R (1997) Thermal conductivity of Si–Ge superlattices. Appl Phys Lett 70(22):2957–2959ADSCrossRefGoogle Scholar
  58. 58.
    Chen G, Neagu M (1997) Thermal conductivity and heat transfer in superlattices. Appl Phys Lett 71(19):2761–2763ADSCrossRefGoogle Scholar
  59. 59.
    Chen G (1998) Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 57(23):14958ADSCrossRefGoogle Scholar
  60. 60.
    Yang R, Chen G (2004) Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys Rev B 69(19):195316ADSCrossRefGoogle Scholar
  61. 61.
    Dames C, Chen G (2003) Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J Appl Phys 95(2):682–693ADSCrossRefGoogle Scholar
  62. 62.
    Capinski WS, Maris HJ, Ruf T et al (1999) Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys Rev B 59(12):8105ADSCrossRefGoogle Scholar
  63. 63.
    Li D, Wu Y, Fan R et al (2003) Thermal conductivity of Si/SiGe superlattice nanowires. Appl Phys Lett 83(15):3186–3188ADSCrossRefGoogle Scholar
  64. 64.
    Luckyanova MN, Garg J, Esfarjani K et al (2012) Coherent phonon heat conduction in superlattices. Science 338(6109):936–939ADSCrossRefGoogle Scholar
  65. 65.
    Henry A, Chen G (2008) High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys Rev Lett 101(23):235502ADSCrossRefGoogle Scholar
  66. 66.
    Shen S, Henry A, Tong J et al (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5(4):251–255ADSCrossRefGoogle Scholar
  67. 67.
    Cao BY, Li YW, Kong J et al (2011) High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. Polymer 52(8):1711–1715CrossRefGoogle Scholar
  68. 68.
    Cahill DG, Ford WK, Goodson KE et al (2002) Nanoscale thermal transport. J Appl Phys 93(2):793–818ADSCrossRefGoogle Scholar
  69. 69.
    Kim W, Wang R, Majumdar A (2007) Nanostructuring expands thermal limits. Nano Today 2(1):40–47CrossRefGoogle Scholar
  70. 70.
    Chen G (2005) Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford University Press, OxfordGoogle Scholar
  71. 71.
    Baxter J, Bian Z, Chen G et al (2009) Nanoscale design to enable the revolution in renewable energy. Energy Environ Sci 2(6):559–588CrossRefGoogle Scholar
  72. 72.
    Minnich A, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2(5):466–479CrossRefGoogle Scholar
  73. 73.
    Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New YorkzbMATHGoogle Scholar
  74. 74.
    Reissland JA (1973) The physics of phonons. Wiley, LondonGoogle Scholar
  75. 75.
    Majumdar A (1993) Microscale heat-conduction in dielectric thin-films. J Heat Transfer 115(1):7–16CrossRefGoogle Scholar
  76. 76.
    McGaughey AJH, Landry ES, Sellan DP et al (2011) Size-dependent model for thin film and nanowire thermal conductivity. Appl Phys Lett 99(13):131904ADSCrossRefGoogle Scholar
  77. 77.
    Ziman JM (2001) Electrons and phonons: the theory of transport phenomena in solids. Oxford University Press, OxfordzbMATHCrossRefGoogle Scholar
  78. 78.
    Mingo N (2003) Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys Rev B 68(11):113308ADSCrossRefGoogle Scholar
  79. 79.
    Hippalgaonkar K, Huang B, Chen R et al (2010) Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett 10(11):4341–4348ADSCrossRefGoogle Scholar
  80. 80.
    Moore AL, Saha SK, Prasher RS et al (2008) Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl Phys Lett 93(8):083112ADSCrossRefGoogle Scholar
  81. 81.
    Carrete J, Gallego LJ, Varela LM, Mingo N (2011) Surface roughness and thermal conductivity of semiconductor nanowires: going below the Casimir limit. Phys Rev B 84(7):075403ADSCrossRefGoogle Scholar
  82. 82.
    He Y, Galli G (2012) Microscopic origin of the reduced thermal conductivity of silicon nanowires. Phys Rev Lett 108(21):215901ADSCrossRefGoogle Scholar
  83. 83.
    Sullivan SE, Lin KH, Avdoshenko S et al (2013) Limit for thermal transport reduction in Si nanowires with nanoengineered corrugations. Appl Phys Lett 103(24):243107ADSCrossRefGoogle Scholar
  84. 84.
    Wang H, Liu J, Guo ZY, Takahashi K (2012) Non-Fourier heat conduction study for steady states in metallic nanofilms. Chin Sci Bull 57(24):3239–3243CrossRefGoogle Scholar
  85. 85.
    Wang HD (2011) Theoretical and experimental studies on non-Fourier heat conduction based on thermomass theory. Doctoral dissertation, Tsinghua University, BeijingGoogle Scholar
  86. 86.
    Minnich AJ, Johnson JA, Schmidt AJ et al (2011) Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys Rev Lett 107(9):095901ADSCrossRefGoogle Scholar
  87. 87.
    Minnich AJ (2012) Determining phonon mean free paths from observations of quasiballistic thermal transport. Phys Rev Lett 109(20):205901ADSCrossRefGoogle Scholar
  88. 88.
    Johnson JA, Maznev AA, Cuffe J et al (2013) Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys Rev Lett 110(2):025901ADSCrossRefGoogle Scholar
  89. 89.
    Regner KT, Sellan DP, Su Z et al (2013) Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat Commun 4:1640CrossRefGoogle Scholar
  90. 90.
    Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 37(4):405ADSzbMATHCrossRefGoogle Scholar
  91. 91.
    Onsager L (1931) Reciprocal relations in irreversible processes II. Phys Rev 38(12):2265ADSzbMATHCrossRefGoogle Scholar
  92. 92.
    Onsager L, Machlup S (1953) Fluctuations and irreversible processes. Phys Rev 91(6):1505–1512ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Machlup S, Onsager L (1953) Fluctuations and irreversible processes. Phys Rev 91:1512–1515ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Callen HB (1948) The application of Onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. Phys Rev 3(11):1349ADSzbMATHCrossRefGoogle Scholar
  95. 95.
    Casimir HBG (1945) On Onsager’s principle of microscopic reversibility. Rev Mod Phys 17(2–3):343ADSCrossRefGoogle Scholar
  96. 96.
    Coleman BD, Truesdell C (1960) On the reciprocal relations of Onsager. J Chem Phys 33(1):28–31ADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    Gyarmati I, Gyarmati E (1970) Non-equilibrium thermodynamics. Springer, BerlinzbMATHCrossRefGoogle Scholar
  98. 98.
    Mazur P, de Groot SR (1963) Non-equilibrium thermodynamics. North-Holland, AmsterdamzbMATHGoogle Scholar
  99. 99.
    Zeng DL (1991) Engineering non-equilibrium thermodynamics. Science Press, BeijingGoogle Scholar
  100. 100.
    Spera FJ, Trial AF (1993) Verification of the Onsager reciprocal relations in a molten silicate solution. Science 259(5092):204–206ADSCrossRefGoogle Scholar
  101. 101.
    Gallavotti G (1996) Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem. J Stat Phys 84(5–6):899–925ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Gabrielli D, Jona-Lasinio G, Landim C (1996) Onsager reciprocity relations without microscopic reversibility. Phys Rev Lett 77(7):1202–1205ADSMathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Sharipov F (2006) Onsager-Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: single gas. Phys Rev E 73(2):026110ADSMathSciNetCrossRefGoogle Scholar
  104. 104.
    Kocherginsky N, Gruebele M (2013) A thermodynamic derivation of the reciprocal relations. J Chem Phys 138(12):124502ADSCrossRefGoogle Scholar
  105. 105.
    Jou D, Casas-Vazquez J, Lebon G (1999) Extended irreversible thermodynamics revisited (1988–98). Rep Prog Phys 62(7):1035Google Scholar
  106. 106.
    Lebon G, Jou D, Casas-Vázquez J (2008) Understanding non-equilibrium thermodynamics. Springer, BerlinzbMATHCrossRefGoogle Scholar
  107. 107.
    Jou D, Casas-Vázquez J, Lebon G (2010) Extended irreversible thermodynamics. Springer, BerlinzbMATHCrossRefGoogle Scholar
  108. 108.
    Cimmelli VA (2009) Different thermodynamic theories and different heat conduction laws. J Non Equilibr Thermodyn 34(4):299–333ADSzbMATHCrossRefGoogle Scholar
  109. 109.
    Criado-Sancho M, Llebot JE (1993) Behavior of entropy in hyperbolic heat conduction. Phys Rev E 47:4104–4107ADSCrossRefGoogle Scholar
  110. 110.
    Casas-Vázquez J, Jou D (1994) Nonequilibrium temperature versus local-equilibrium temperature. Phys Rev E 49(2):1040Google Scholar
  111. 111.
    Casas-Vazquez J, Jou D (2003) Temperature in non-equilibrium states: a review of open problems and current proposals. Rep Prog Phys 66(11):1937Google Scholar
  112. 112.
    Cimmelli VA, Sellitto A, Jou D (2009) Nonlocal effects and second sound in a nonequilibrium steady state. Phys Rev B 79(1):014303ADSCrossRefGoogle Scholar
  113. 113.
    Cimmelli VA, Sellitto A, Jou D (2010) Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys Rev B 81(5):054301ADSCrossRefGoogle Scholar
  114. 114.
    Cimmelli VA, Sellitto A, Jou D (2010) Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys Rev B 82(18):184302ADSCrossRefGoogle Scholar
  115. 115.
    Alvarez FX, Jou D (2008) Size and frequency dependence of effective thermal conductivity in nanosystems. J Appl Phys 103(9):094321ADSCrossRefGoogle Scholar
  116. 116.
    Sellitto A, Alvarez FX, Jou D (2010) Second law of thermodynamics and phonon-boundary conditions in nanowires. J Appl Phys 107(6):064302ADSCrossRefGoogle Scholar
  117. 117.
    Jou D, Criado-Sancho M, Casas-Vázquez J (2010) Heat fluctuations and phonon hydrodynamics in nanowires. J Appl Phys 107(8):084302ADSCrossRefGoogle Scholar
  118. 118.
    Jou D, Cimmelli VA, Sellitto A (2012) Nonlocal heat transport with phonons and electrons: application to metallic nanowires. Int J Heat Mass Transf 55(9):2338–2344zbMATHCrossRefGoogle Scholar
  119. 119.
    Sellitto A, Alvarez FX, Jou D (2012) Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires. Int J Heat Mass Transf 5(11):3114–3120CrossRefGoogle Scholar
  120. 120.
    Sellitto A, Cimmelli VA, Jou D (2013) Entropy flux and anomalous axial heat transport at the nanoscale. Phys Rev B 87(5):054302ADSCrossRefGoogle Scholar
  121. 121.
    Wikipedia (2014) Thermodynamics. http://en.wikipedia.org/wiki/Thermodynamics#cite_note-41. Accessed 08 Apr 2014
  122. 122.
    Guo ZY, Cao BY, Zhu HY et al (2007) State equation of phonon gas and conservation equations for phonon gas motion. Acta Phys Sin 56(6):3306–3312Google Scholar
  123. 123.
    Guo ZY, Cao BY (2008) A general heat conduction law based on the concept of motion of thermal mass. Acta Phys Sin 57(7):4273–4281Google Scholar
  124. 124.
    Cao BY, Guo ZY (2007) Equation of motion of a phonon gas and non-Fourier heat conduction. J Appl Phys 102(5):053503ADSCrossRefGoogle Scholar
  125. 125.
    Tzou DY, Guo ZY (2010) Nonlocal behavior in thermal lagging. Int J Therm Sci 49(7):1133–1137CrossRefGoogle Scholar
  126. 126.
    Guo ZY, Hou QW (2010) Thermal wave based on the thermomass model. J Heat Transf 132(7):072403CrossRefGoogle Scholar
  127. 127.
    Guo ZY, Zhu HY, Liang XG (2007) Entransy—a physical quantity describing heat transfer ability. Int J Heat Mass Transf 50(13):2545–2556zbMATHCrossRefGoogle Scholar
  128. 128.
    Zhu H Y (2007) The minimum thermal resistance principle based on entransy dissipation. Doctoral dissertation, Tsinghua University, BeijingGoogle Scholar
  129. 129.
    Chen Q (2008) Irreversibility and optimization of convective transport processes. Doctoral dissertation, Tsinghua University, BeijingGoogle Scholar
  130. 130.
    Chen Q, Liang XG, Guo ZY (2013) Entransy theory for the optimization of heat transfer—a review and update. Int J Heat Mass Transf 63:65–81CrossRefGoogle Scholar
  131. 131.
    Cheng XT, Liang XG (2013) From thermomass to entransy. Int J Heat Mass Transf 62:174–177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory for Thermal Science and Power Engineering of Ministry of EducationDepartment of Engineering Mechanics, Tsinghua UniversityBeijingChina

Personalised recommendations