Skip to main content

Auction Design with a Revenue Target

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9347))

Included in the following conference series:

  • 1227 Accesses

Abstract

In many fund-raising situations, a revenue target is specified. This suggests that the fund-raiser is interested in maximizing the probability to achieve this revenue target, rather than in maximizing the expected revenue. We study this topic from the perspective of Bayesian mechanism design, in a setting where a seller has a certain good that he can supply at no cost, and there are buyers whose joint valuation for the good comes from some given prior distribution. We present an algorithm to find the optimal truthful auction for two buyers with independent valuations via a direct characterization of the optimal auction. In contrast, we show the problem is NP-hard when the number of buyers is arbitrary or the distributions are correlated. Both negative results can be modified to show NP-hardness of designing auctions for risk-averse sellers.

Our main results address the design of simple auctions for many buyers, again in the context of a revenue target. For Sequential Posted Price Auctions, we provide a FPTAS to compute the optimal posted prices for a given sequence of buyers. For Monopoly Price Auctions, we apply the results of [8] on sparse covers of distributions to obtain a PTAS in a setting where the seller has a constraint on discriminatory pricing, consisting of a fixed set of prices he may use.

P.W. Goldberg — Supported by EPSRC under grant EP/K01000X/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhalgat, A., Chakraborty, T., Khanna, S.: Mechanism Design for a Risk Averse Seller. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 198–211. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Cai, Y., Daskalakis, C., Weinberg, S.: Understanding incentives: Mechanism design becomes algorithm design, In: FOCS 2013, pp. 618–627. IEEE, October 2013

    Google Scholar 

  3. Cai, Y., Daskalakis, C., Weinberg, S.M.: Optimal multi-dimensional mechanism design: Reducing revenue to welfare maximization. In: FOCS 2012, pp. 130–139. IEEE Computer Society, Washington (2012)

    Google Scholar 

  4. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism design and sequential posted pricing. In: STOC 2010, New York, NY, pp. 311–320 (2010)

    Google Scholar 

  5. Chen, N., Gravin, N., Lu, P.: Optimal competitive auctions. In: STOC 2014, pp. 253–262. ACM, New York (2014)

    Google Scholar 

  6. Chen, X., Diakonikolas, I., Paparas, D., Sun, X., Yannakakis, M.: The complexity of optimal multidimensional pricing. In: SODA 2014, pp. 1319–1328. SIAM (2014)

    Google Scholar 

  7. Daskalakis, C., Diakonikolas, I., Servedio, R.A.: Learning poisson binomial distributions. In: STOC 2012, pp. 709–728. ACM, New York (2012)

    Google Scholar 

  8. Daskalakis, C., Papadimitriou, C.: Sparse covers for sums of indicators. Probab. Theory Relat. Fields 162, 679–705 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daskalakis, C., Papadimitriou, C.H.: Approximate Nash equilibria in anonymous games. J. Econ. Theory 156, 207–245 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diakonikolas, I., Papadimitriou, C., Pierrakos, G., Singer, Y.: Efficiency-revenue trade-offs in auctions. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 488–499. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive auctions and digital goods. In: SODA 2001, pp. 735–744. SIAM, Philadelphia (2001)

    Google Scholar 

  12. Hartline, J.D.: Mechanism design and approximation. Book draft, October 2013

    Google Scholar 

  13. Hartline, J.D., Roughgarden, T.: Simple versus optimal mechanisms. SIGecom Exch. 5:8(1), 1–5:3 (2009)

    Article  Google Scholar 

  14. Li, J., Yuan, W.: Stochastic combinatorial optimization via poisson approximation, In: STOC 2013, pp. 971–980. ACM, New York (2013)

    Google Scholar 

  15. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Papadimitriou, C.H., Pierrakos, G.: On optimal single-item auctions. In: STOC 2011, pp. 119–128. ACM, New York (2011)

    Google Scholar 

  17. Rothschild, M., Stiglitz, J.E.: Increasing risk: I. A definition. J. Econ. Theory 2(3), 225–243 (1970)

    Article  MathSciNet  Google Scholar 

  18. Sundararajan, M., Yan, Q.: Robust mechanisms for risk-averse sellers. In: EC 2010, pp. 139–148. ACM, New York (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, P.W., Tang, B. (2015). Auction Design with a Revenue Target. In: Hoefer, M. (eds) Algorithmic Game Theory. SAGT 2015. Lecture Notes in Computer Science(), vol 9347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48433-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48433-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48432-6

  • Online ISBN: 978-3-662-48433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics