Skip to main content

Smooth Time-Varying Formation Control of Multiple Nonholonomic Agents

  • Conference paper
  • First Online:
Proceedings of the 2015 Chinese Intelligent Systems Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE))

Abstract

In this paper, we investigate the position/orientation formation problem of multiple nonholonomic agents. Coordinate transformations are first presented to obtain the matrix form of formation error model, then a distributed smooth time-varying control law is designed based on a Lyapunov-like function. We prove that the closed-formation-system is globally asymptotically stable by Barbalat’s lemma if the communication graph is undirected, time-invariant and connected. Simulation results verify the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ren W, Beard RW, Atkins EM (2005) A survey of consensus problems in multi-agent coordination [C]. In: IEEE Proceedings of the 2005 American Control Conference, pp 1859–1864

    Google Scholar 

  2. Kranakis E, Krizanc D, Rajsbaum S (2006) Mobile agent rendezvous: a survey [M]. In: Structural information and communication complexity, Springer Berlin, pp 1–9

    Google Scholar 

  3. Olfati SR, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems [J]. Proc IEEE 95(1):215–233

    Article  Google Scholar 

  4. Olfati-Saber R, Murray RM (2004) Consensus problems in networks of agents with switching topology and time-delays [J]. IEEE Trans Autom Control 49(9):1520–1533

    Article  MathSciNet  MATH  Google Scholar 

  5. Ren W, Chao H, Bourgeous W et al (2008) Experimental validation of consensus algorithms for multivehicle cooperative control [J]. IEEE Trans Control Syst Technol 16(4):745–752

    Article  Google Scholar 

  6. Hui Q (2011) Finite-time rendezvous algorithms for mobile autonomous agents [J]. IEEE Trans Autom Control 56(1):207–211

    Article  MathSciNet  MATH  Google Scholar 

  7. Cortés J, Martínez S, Bullo F (2006) Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions [J]. IEEE Trans Autom Control 51(8):1289–1298

    Article  MathSciNet  MATH  Google Scholar 

  8. Conte G, Pennesi P (2007) On convergence conditions for rendezvous [C]. In: The 46th IEEE Conference on decision and control, p 2375–2378

    Google Scholar 

  9. Fan Y, Feng G, Wang Y (2011) Combination framework of rendezvous algorithm for multi-agent systems with limited sensing ranges [J]. Asian J Control 13(2):283–294

    Article  MathSciNet  MATH  Google Scholar 

  10. Su H, Wang X, Chen G (2010) Rendezvous of multiple mobile agents with preserved network connectivity [J]. Syst Control Lett 59(5):313–322

    Article  MathSciNet  MATH  Google Scholar 

  11. Fax JA, Murray RM (2004) Information flow and cooperative control of vehicle formations [J]. IEEE Trans Autom Control 49(9):1465–1476

    Article  MathSciNet  MATH  Google Scholar 

  12. Smith SL, Broucke ME, Francis BA (2007) Curve shortening and the rendezvous problem for mobile autonomous robots [J]. IEEE Trans Autom Control 52(6):1154–1159

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong W, Farrell JA (2008) Consensus of multiple nonholonomic systems [C]. In: The 47th IEEE conference on decision and control (CDC), p 2270–2275

    Google Scholar 

  14. Dong W, Farrell JA (2008) Cooperative control of multiple nonholonomic mobile agents [J]. IEEE Trans Autom Control 53(6):1434–1448

    Article  MathSciNet  MATH  Google Scholar 

  15. El-Hawwary MI, Maggiore M (2013) Distributed circular formation stabilization for dynamic unicycles [J]. IEEE Trans Autom Control 58(1):149–162

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu T, Jiang ZP (2013) Distributed formation control of nonholonomic mobile robots without global position measurements [J]. Automatica 49(2):592–600

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang P, Ding BC (2014) Distributed RHC for tracking and formation of nonholonomic multi-vehicle systems [J]. IEEE Trans Autom Control 59(6):1439–1453

    Article  MathSciNet  MATH  Google Scholar 

  18. Consolini L, Morbidi F, Prattichizzo D et al (2008) Leader–follower formation control of nonholonomic mobile robots with input constraints [J]. Automatica 44(5):1343–1349

    Article  MathSciNet  MATH  Google Scholar 

  19. Park BS, Park JB, Choi YH (2011) Robust adaptive formation control and collision avoidance for electrically driven non-holonomic mobile robots [J]. IET Control Theory Appl 5(3):514–522

    Article  MathSciNet  Google Scholar 

  20. López-Nicolás G, Aranda M, Mezouar Y et al (2012) Visual control for multirobot organized rendezvous [J]. IEEE Trans Syst Man Cybern B Cybern 42(4):1155–1168

    Article  Google Scholar 

  21. Listmann KD, Masalawala MV, Adamy J (2009) Consensus for formation control of nonholono- mic mobile robots [C]. In: IEEE International conference on robotics and automation (ICRA), p 3886–3891

    Google Scholar 

  22. Yoshioka C, Namerikawa T (2008) Formation control of nonholonomic multi-vehicle systems based on virtual structure [C]. In: The 17th IFAC world congress, p 5149–5154

    Google Scholar 

  23. Lin Z, Francis B, Maggiore M (2005) Necessary and sufficient graphical conditions for formation control of unicycles [J]. IEEE Trans Autom Control 50(1):121–127

    Article  MathSciNet  MATH  Google Scholar 

  24. Khalil HK, Grizzle JW (1996) Nonlinear systems, vol 3 [M]. Prentice hall, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, C., Xie, W., Lei, C., Ma, B. (2016). Smooth Time-Varying Formation Control of Multiple Nonholonomic Agents. In: Jia, Y., Du, J., Li, H., Zhang, W. (eds) Proceedings of the 2015 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48386-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48386-2_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48384-8

  • Online ISBN: 978-3-662-48386-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics