Skip to main content

The Influenza Virus Immune Model on the Android Platform

  • Conference paper
  • First Online:
  • 983 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE))

Abstract

In biological experiments, it has been impossible that we just use experimental apparatus to deal with the complex problems in immune cells. And the traditional mathematics and the physics model have some limitations, like lacking of microcosmic performance description of unit cells [1]. In this article, we do detail design after analyzing the requirements of the immune system. Then, combining with the related data of influenza virus, we use the Android platform application development to simulate the system. Android platform’s simple style of page, the application of interactive interface and the easy management can bring us different experiences. With the help of the computer program simulation, the experimental result is consistent with the model of immune response in the immune system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129

    MathSciNet  MATH  Google Scholar 

  2. Ferreira C (2006) Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer-Verlag, Berlin

    MATH  Google Scholar 

  3. Ferreira C (2002) Discovery of the boolean function to the best density—classification rules using gene expression programming. In: Proceeding of the 4th european conference on genetic programming, 2278:51–60

    Google Scholar 

  4. Yuan C, Tang C, Zuo J, chen A, Wen Y (2006) Attribute reduction function mining algorithm based on gene expression programming. In: Proceedings of 2006 international conference on machine learning and cybernetics, 2(7):1007–1012

    Google Scholar 

  5. Ferreira C (2001) Gene Expression programming in problem solving. In: Invited tutorial of the 6 the online world conference on soft computing in industrial applications

    Google Scholar 

  6. Keith MJ, Martin MC (1994) Genetic Programming in C ++:Implementation Issue. MIT press, Cambridge, p 97

    Google Scholar 

  7. Solomonoff R, Rapoport A (1951) Connectivity of random networks. Bull Math Biophys 13:107–117

    Google Scholar 

  8. Bollobas B (2001) RandomGraphs, 2nd edn. AcademicPress, NewYork

    Google Scholar 

  9. Newman MEJ, Watts DJ (1999) Renormalization group analysis of the small-world network model. Phys Lett A 263:341–346

    Article  MathSciNet  MATH  Google Scholar 

  10. Newman MEJ, Watts DJ (1999) Renormalization group analysis of the small-world network model. Phys Lett A 263:341–346

    Article  MathSciNet  MATH  Google Scholar 

  11. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  MathSciNet  MATH  Google Scholar 

  12. Kerkhove MDV, Asikainen T, Becker NG, Bjorge S, Desenclos JC, dos Santos T, Fraser C, Leung GM, Lipsitch M, Longini IM, McBryde ES, Roth CE, Shay DK, Smith DJ, Wallinga J, White PJ, Ferguson NM, Riley S (2010) W H O informal network for mathematical modelling for pandemic influenza H1N1 2009 (Working Group on Data Needs): studies needed to address public health challenges of the 2009 H1N1 influenza pandemic: insights from modeling. PLoS Med 7(6):e1000275

    Google Scholar 

  13. Miller JH, Page SE (2007) Complex Adaptive Systems: An Introduction to Computational Models of Social Life. Princeton University Press, Princeton

    Google Scholar 

  14. Funk G, Barbour A, Hengartner H, Kalinke U (1998) Mathematical model of a virus neutralizing immunglobulin response. J Theor Biol 195(1):41–52

    Article  Google Scholar 

  15. Forrest S, Beauchemin C (2007) Computer immunology. Immunol Rev 216(1):176–197

    Article  Google Scholar 

  16. Fachada N (2005) SimulIm: An application for the modelling and simulation of complex systems, using the immune system as an example. Graduation project report, Higher Technical Institute, Technical University of Lisbon

    Google Scholar 

  17. Bernaschi M, Castiglione F (2001) Design and implementation of an immune system simulator. Comput Biol Med 31(5):303–313

    Article  Google Scholar 

  18. Emerson A, Rossi E (2007) ImmunoGrid—the virtual human immune system project. Stud Health Technol Inf 126:87–92

    Google Scholar 

  19. Mata J, Cohn M (2007) Cellular automata-based modeling program: synthetic immune system. Immunol Rev 216(1):198–212

    Article  Google Scholar 

  20. Warrender C (2004) Modeling intercellular interactions in the peripheral immune system. Ph.D. thesis, The University of New Mexico

    Google Scholar 

  21. Ballet P, Tisseau J, Harrouet F (1997) A multiagent system to model a human humoral response. IEEE International conference on computational, cybernetics and simulation 10:357–362

    Google Scholar 

  22. Daigle J (2006) Human immune system simulation: a survey of current approaches. ACM J

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengrong Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zou, S., Jin, X., Zhong, N., Yan, J., Yu, L. (2016). The Influenza Virus Immune Model on the Android Platform. In: Jia, Y., Du, J., Li, H., Zhang, W. (eds) Proceedings of the 2015 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48365-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48365-7_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48363-3

  • Online ISBN: 978-3-662-48365-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics