Online Appointment Scheduling in the Random Order Model

  • Oliver Göbel
  • Thomas Kesselheim
  • Andreas Tönnis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9294)

Abstract

We consider the following online appointment scheduling problem: Jobs of different processing times and weights arrive online step-by-step. Upon arrival of a job, its (future) starting date has to be determined immediately and irrevocably before the next job arrives, with the objective of minimizing the average weighted completion time. In this type of scheduling problem it is impossible to achieve non-trivial competitive ratios in the classical, adversarial arrival model, even if jobs have unit processing times. We weaken the adversary and consider random order of arrival instead. In this model the adversary defines the weight processing time pairs for all jobs, but the order in which the jobs arrive online is a permutation drawn uniformly at random.

For the case of jobs with unit processing time we give a constant competitive algorithm. We use this algorithm as a building block for the general case of variable job processing times and achieve competitive ratio \(\mathcal{O}\)(log n). We complement these algorithms with a lower bound of Ω(n) for unit-processing time jobs in the adversarial input model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afrati, F.N., Bampis, E., Chekuri, C., Karger, D.R., Kenyon, C., Khanna, S., Milis, I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes for minimizing average weighted completion time with release dates. In: Proc. 40th Symp. Foundations of Computer Science (FOCS), pp. 32–44 (1999)Google Scholar
  2. 2.
    Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear programming. Operations Research 62(4), 876–890 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ajtai, M., Megiddo, N., Waarts, O.: Improved algorithms and analysis for secretary problems and generalizations. SIAM J. Discrete Math. 14(1), 1–27 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: Proc. 18th Symp. Discr. Algorithms (SODA), pp. 434–443 (2007)Google Scholar
  5. 5.
    Begen, M.A., Queyranne, M.: Appointment scheduling with discrete random durations. Math. Oper. Res. 36(2), 240–257 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing. Math. Oper. Res. 34(2), 270–286 (2009)Google Scholar
  7. 7.
    Chekuri, C., Khanna, S.: A PTAS for minimizing weighted completion time on uniformly related machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 848–861. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Correa, J.R., Wagner, M.R.: Lp-based online scheduling: from single to parallel machines. Math. Program. 119(1), 109–136 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Devanur, N.R., Hayes, T.P.: The adwords problem: online keyword matching with budgeted bidders under random permutations. In: Proc. 10th Conf. Electr. Commerce (EC), pp. 71–78 (2009)Google Scholar
  10. 10.
    Devanur, N.R., Jain, K., Sivan, B., Wilkens, C.A.: Near optimal online algorithms and fast approximation algorithms for resource allocation problems. In: Proc. 12th Conf. Electr. Commerce (EC), pp. 29–38 (2011)Google Scholar
  11. 11.
    Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic packing applied to display ad allocation. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 182–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Feldman, M., Svensson, O., Zenklusen, R.: A simple O(log log(rank))-competitive algorithm for the matroid secretary problem. In: Proc. 26th Symp. Discr. Algorithms (SODA), pp. 1189–1201 (2015)Google Scholar
  13. 13.
    Fiat, A., Woeginger, G.J.: On-line scheduling on a single machine: Minimizing the total completion time. Acta Inf. 36(4), 287–293 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Göbel, O., Hoefer, M., Kesselheim, T., Schleiden, T., Vöcking, B.: Online independent set beyond the worst-case: Secretaries, prophets, and periods. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 508–519. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Günther, E., Maurer, O., Megow, N., Wiese, A.: A new approach to online scheduling: Approximating the optimal competitive ratio. In: Proc. 24th Symp. Discr. Algorithms (SODA), pp. 118–128 (2013)Google Scholar
  16. 16.
    Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online packing LPs in the random-order model. In: Proc. 46th Symp. Theory of Computing (STOC), pp. 303–312 (2014)Google Scholar
  17. 17.
    Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities. In: Proc. 44th Symp. Theory of Computing (STOC), pp. 123–136 (2012)Google Scholar
  18. 18.
    Lachish, O.: O(log log rank) competitive ratio for the matroid secretary problem. In: Proc. 55th Symp. Foundations of Computer Science (FOCS), pp. 326–335 (2014)Google Scholar
  19. 19.
    Megow, N., Schulz, A.S.: On-line scheduling to minimize average completion time revisited. Oper. Res. Lett., 32(5):485–490 (2004)Google Scholar
  20. 20.
    Megow, N., Uetz, M., Vredeveld, T.: Models and algorithms for stochastic online scheduling. Math. Oper. Res., 31(3):513–525 (2006)Google Scholar
  21. 21.
    Megow, N., Vredeveld, T.: A tight 2-approximation for preemptive stochastic scheduling. Math. Oper. Res. 39(4), 1297–1310 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: Adwords and generalized online matching. J. ACM 54(5) (2007)Google Scholar
  23. 23.
    Meyerson, A.: Online facility location. In: Proc. 42nd Symp. Foundations of Computer Science (FOCS), pp. 426–431 (2001)Google Scholar
  24. 24.
    Meyerson, A.: The parking permit problem. In: Proc. 46th Symp. Foundations of Computer Science (FOCS), pp. 274–284 (2005)Google Scholar
  25. 25.
    Meyerson, A., Munagala, K., Plotkin, S.A.: Designing networks incrementally. In: Proc. 42nd Symp. Foundations of Computer Science (FOCS), pp. 406–415 (2001)Google Scholar
  26. 26.
    Molinaro, M., Ravi, R.: The geometry of online packing linear programs. Math. Oper. Res. 39(1), 46–59 (2014)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Schulz, A.S., Skutella, M.: The power of α-points in preemptive single machine scheduling. Journal of Scheduling 5, 121–133 (2002)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Sitters, R.: Competitive analysis of preemptive single-machine scheduling. Operations Research Letters 38(6), 585–588 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Oliver Göbel
    • 1
  • Thomas Kesselheim
    • 2
  • Andreas Tönnis
    • 1
  1. 1.Department of Computer ScienceRWTH Aachen UniversityAachenGermany
  2. 2.Max-Planck-Institut für Informatik and Saarland UniversitySaarbrückenGermany

Personalised recommendations