Skip to main content

Fast Algorithms for Parameterized Problems with Relaxed Disjointness Constraints

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Abstract

In this paper we consider generalized versions of four well-studied problems in parameterized complexity and exact exponential time algorithms: k-Path, Set Packing, Multilinear Monomial Testing and Hamiltonian Path. The generalization is in every case obtained by introducing a relaxation parameter, which relaxes the constraints on feasible solutions. For example, the k-Path problem is generalized to r -Simple k -Path where the task is to find a walk of length k that never visits any vertex more than r times. This problem was first considered by Abasi et al. [1]. Hamiltonian Path is generalized to Degree Bounded Spanning Tree, where the input is a graph G and integer d, and the task is to find a spanning tree T of G such that every vertex has degree at most d in T.

The generalized problems can easily be shown to be NP-complete for every fixed value of the relaxation parameter. On the other hand, we give algorithms for the generalized problems whose worst-case running time (a) matches the running time of the best algorithms for the original problems up to constants in the exponent, and (b) improves significantly as the relaxation parameter increases. For example, we give a deterministic algorithm with running time \(O^{*}(2^{O(k\frac{\log r}{r})})\) for r -Simple k -Path matching up to a constant in the exponent the randomized algorithm of Abasi et al. [1], and a randomized algorithm with running time \(O^{*}(2^{O(n\frac{\log d}{d})})\) for Degree Bounded Spanning Tree improving upon an O(2n + o(n)) algorithm of Fomin et al. [8].

On the way to obtain our results we generalize the notion of representative sets to multisets, and give an efficient algorithm to compute such representative sets. Both the generalization of representative sets to multisets and the algorithm to compute them may be of independent interest.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257575 and 240258. Mi. Pilipczuk is currently holding a post-doc position at Warsaw Center of Mathematics and Computer Science and is supported by Polish National Science Centre grant DEC-2013/11/D/ST6/03073.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abasi, H., Bshouty, N.H., Gabizon, A., Haramaty, E.: On r-Simple k-Path. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 1–12. Springer, Heidelberg (2014)

    Google Scholar 

  2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. CoRR, abs/1007.1161 (2010)

    Google Scholar 

  3. Bshouty, N.H.: Testers and their applications. In: ITCS 2014, pp. 327–352 (2014)

    Google Scholar 

  4. Cygan, M., Fomin, F.V., Lokshtanov, D., Kowalik, L., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (in press, 2015)

    Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013)

    Google Scholar 

  6. Fernau, H., López-Ortiz, A., Romero, J.: Kernelization algorithms for packing problems allowing overlaps. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 415–427. Springer, Heidelberg (2015)

    Google Scholar 

  7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 443–454. Springer, Heidelberg (2014)

    Google Scholar 

  10. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms. In: SODA 2014, pp. 142–151 (2014)

    Google Scholar 

  11. Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner Tree to within one of optimal. J. Algorithms 17(3), 409–423 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabizon, A., Lokshtanov, D., Pilipczuk, M.: Fast algorithms for parameterized problems with relaxed disjointness constraints. CoRR, abs/1411.6756 (2014)

    Google Scholar 

  13. Goemans, M.X.: Minimum bounded degree spanning trees. In: FOCS 2006, pp. 273–282 (2006)

    Google Scholar 

  14. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Linial, N., Luby, M., Saks, M.E., Zuckerman, D.: Efficient construction of a small hitting set for combinatorial rectangles in high dimension. Combinatorica 17(2), 215–234 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Monien, B.: How to find long paths efficiently. In: Analysis and Design of Algorithms for Combinatorial Problems, Udine. North-Holland Math. Stud., vol. 109, pp. 239–254. North-Holland, Amsterdam (1982)

    Chapter  Google Scholar 

  17. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31, p. 300. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  18. Pinter, R.Y., Shachnai, H., Zehavi, M.: Deterministic parameterized algorithms for the graph motif problem. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 589–600. Springer, Heidelberg (2014)

    Google Scholar 

  19. Shachnai, H., Zehavi, M.: Representative families: A unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014)

    Google Scholar 

  20. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. J. ACM 62(1), 1–1 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tutte, W.T.: Graph Theory. Cambridge University Press (2001)

    Google Scholar 

  22. Williams, R.: Finding paths of length k in O *(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zehavi, M.: Deterministic parameterized algorithms for matching and packing problems. CoRR, abs/1311.0484 (2013)

    Google Scholar 

  24. Zehavi, M.: Solving parameterized problems by mixing color coding-related techniques. CoRR, abs/1410.5062 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Gabizon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabizon, A., Lokshtanov, D., Pilipczuk, M. (2015). Fast Algorithms for Parameterized Problems with Relaxed Disjointness Constraints. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics