Abstract
In this paper we consider generalized versions of four well-studied problems in parameterized complexity and exact exponential time algorithms: k-Path, Set Packing, Multilinear Monomial Testing and Hamiltonian Path. The generalization is in every case obtained by introducing a relaxation parameter, which relaxes the constraints on feasible solutions. For example, the k-Path problem is generalized to r -Simple k -Path where the task is to find a walk of length k that never visits any vertex more than r times. This problem was first considered by Abasi et al. [1]. Hamiltonian Path is generalized to Degree Bounded Spanning Tree, where the input is a graph G and integer d, and the task is to find a spanning tree T of G such that every vertex has degree at most d in T.
The generalized problems can easily be shown to be NP-complete for every fixed value of the relaxation parameter. On the other hand, we give algorithms for the generalized problems whose worst-case running time (a) matches the running time of the best algorithms for the original problems up to constants in the exponent, and (b) improves significantly as the relaxation parameter increases. For example, we give a deterministic algorithm with running time \(O^{*}(2^{O(k\frac{\log r}{r})})\) for r -Simple k -Path matching up to a constant in the exponent the randomized algorithm of Abasi et al. [1], and a randomized algorithm with running time \(O^{*}(2^{O(n\frac{\log d}{d})})\) for Degree Bounded Spanning Tree improving upon an O(2n + o(n)) algorithm of Fomin et al. [8].
On the way to obtain our results we generalize the notion of representative sets to multisets, and give an efficient algorithm to compute such representative sets. Both the generalization of representative sets to multisets and the algorithm to compute them may be of independent interest.
The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257575 and 240258. Mi. Pilipczuk is currently holding a post-doc position at Warsaw Center of Mathematics and Computer Science and is supported by Polish National Science Centre grant DEC-2013/11/D/ST6/03073.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abasi, H., Bshouty, N.H., Gabizon, A., Haramaty, E.: On r-Simple k-Path. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 1–12. Springer, Heidelberg (2014)
Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. CoRR, abs/1007.1161 (2010)
Bshouty, N.H.: Testers and their applications. In: ITCS 2014, pp. 327–352 (2014)
Cygan, M., Fomin, F.V., Lokshtanov, D., Kowalik, L., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (in press, 2015)
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013)
Fernau, H., López-Ortiz, A., Romero, J.: Kernelization algorithms for packing problems allowing overlaps. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 415–427. Springer, Heidelberg (2015)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)
Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706 (2012)
Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 443–454. Springer, Heidelberg (2014)
Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms. In: SODA 2014, pp. 142–151 (2014)
Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner Tree to within one of optimal. J. Algorithms 17(3), 409–423 (1994)
Gabizon, A., Lokshtanov, D., Pilipczuk, M.: Fast algorithms for parameterized problems with relaxed disjointness constraints. CoRR, abs/1411.6756 (2014)
Goemans, M.X.: Minimum bounded degree spanning trees. In: FOCS 2006, pp. 273–282 (2006)
Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)
Linial, N., Luby, M., Saks, M.E., Zuckerman, D.: Efficient construction of a small hitting set for combinatorial rectangles in high dimension. Combinatorica 17(2), 215–234 (1997)
Monien, B.: How to find long paths efficiently. In: Analysis and Design of Algorithms for Combinatorial Problems, Udine. North-Holland Math. Stud., vol. 109, pp. 239–254. North-Holland, Amsterdam (1982)
Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31, p. 300. Oxford University Press, Oxford (2006)
Pinter, R.Y., Shachnai, H., Zehavi, M.: Deterministic parameterized algorithms for the graph motif problem. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 589–600. Springer, Heidelberg (2014)
Shachnai, H., Zehavi, M.: Representative families: A unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014)
Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. J. ACM 62(1), 1–1 (2015)
Tutte, W.T.: Graph Theory. Cambridge University Press (2001)
Williams, R.: Finding paths of length k in O *(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)
Zehavi, M.: Deterministic parameterized algorithms for matching and packing problems. CoRR, abs/1311.0484 (2013)
Zehavi, M.: Solving parameterized problems by mixing color coding-related techniques. CoRR, abs/1410.5062 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gabizon, A., Lokshtanov, D., Pilipczuk, M. (2015). Fast Algorithms for Parameterized Problems with Relaxed Disjointness Constraints. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_46
Download citation
DOI: https://doi.org/10.1007/978-3-662-48350-3_46
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-48349-7
Online ISBN: 978-3-662-48350-3
eBook Packages: Computer ScienceComputer Science (R0)