Skip to main content

Approximate Deadline-Scheduling with Precedence Constraints

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Abstract

We consider the classic problem of scheduling a set of n jobs non-preemptively on a single machine. Each job j has non-negative processing time, weight, and deadline, and a feasible schedule needs to be consistent with chain-like precedence constraints. The goal is to compute a feasible schedule that minimizes the sum of penalties of late jobs. Lenstra and Rinnoy Kan [Annals of Disc. Math., 1977] in their seminal work introduced this problem and showed that it is strongly NP-hard, even when all processing times and weights are 1. We study the approximability of the problem and our main result is an O(logk)-approximation algorithm for instances with k distinct job deadlines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balas, E.: Facets of the knapsack polytope. Math. Programming 8, 146–164 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, N., Pruhs, K.: The geometry of scheduling. In: Proceedings of the IEEE Symposium on Foundations of Computer Science, pp. 407–414 (2010)

    Google Scholar 

  3. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on scheduling: from theory to applications. Springer (2007)

    Google Scholar 

  4. Carr, R.D., Fleischer, K.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 106–115 (2000)

    Google Scholar 

  5. Chakrabarty, D., Grant, E., Könemann, J.: On column-restricted and priority covering integer programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 355–368. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Correa, J.R., Schulz, A.S.: Single-machine scheduling with precedence constraints. Math. Oper. Res. 30(4), 1005–1021 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Efsandiari, H., Hajiaghayi, M., Könemann, J., Mahini, H., Malek, D., Sanità, L.: Approximate deadline-scheduling with precedence constraints. Technical report, arXiv (2015)

    Google Scholar 

  8. Gens, G.V., Levner, E.V.: Fast approximation algorithm for job sequencing with deadlines. Discrete Appl. Math. 3(4), 313–318 (1981)

    Article  MATH  Google Scholar 

  9. Goldberg, S., Liu, Z.: Technology diffusion in communication networks. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 233–240 (2013)

    Google Scholar 

  10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics 5, 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: Off-line and on-line approximation algorithms. Math. Oper. Res. 22(3), 513–544 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hall, L.A., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: Off-line and on-line algorithms. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 142–151 (1996)

    Google Scholar 

  14. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facets of regular 0,1-polytopes. Math. Programming 8, 179–206 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ibarra, O.H., Kim, C.E.: Approximation algorithms for certain scheduling problems. Math. Oper. Res. 3(3), 197–204 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, NY (1972)

    Chapter  Google Scholar 

  17. Kolliopoulos, S.G.: Approximating covering integer programs with multiplicity constraints. Discrete Appl. Math. 129(2-3), 461–473 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing integer programs. J. Comput. System Sci. 71(4), 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Könemann, J., Sadeghian, S., Sanità, L.: Better approximation algorithms for technology diffusion. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 637–646. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Annals of Discrete Mathematics 1, 343–362 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity results for scheduling chains on a single machine. European J. Operations Research 4(4), 270–275 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pinedo, M.L.: Scheduling: theory, algorithms, and systems. Springer (2012)

    Google Scholar 

  23. Sahni, S.K.: Algorithms for scheduling independent tasks. J. ACM 23(1), 116–127 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Schulz, A.S.: Scheduling to minimize total weighted completion time: Performance guarantees of lp-based heuristics and lower bounds. In: Proceedings of the MPS Conference on Integer Programming and Combinatorial Optimization, pp. 301–315 (1996)

    Google Scholar 

  25. Wolsey, L.: Facets for a linear inequality in 0-1 variables. Math. Programming 8, 168–175 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Efsandiari, H., Hajiaghyi, M., Könemann, J., Mahini, H., Malec, D., Sanità, L. (2015). Approximate Deadline-Scheduling with Precedence Constraints. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics