Skip to main content

Fully-Dynamic Approximation of Betweenness Centrality

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))


Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Since an exact computation is prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in evolving networks. In previous work we proposed the first semi-dynamic algorithms that recompute an approximation of betweenness in connected graphs after batches of edge insertions.

In this paper we propose the first fully-dynamic approximation algorithms (for weighted and unweighted undirected graphs that need not to be connected) with a provable guarantee on the maximum approximation error. The transfer to fully-dynamic and disconnected graphs implies additional algorithmic problems that could be of independent interest. In particular, we propose a new upper bound on the vertex diameter for weighted undirected graphs. For both weighted and unweighted graphs, we also propose the first fully-dynamic algorithms that keep track of this upper bound. In addition, we extend our former algorithm for semi-dynamic BFS to batches of both edge insertions and deletions.

Using approximation, our algorithms are the first to make in-memory computation of betweenness in fully-dynamic networks with millions of edges feasible. Our experiments show that they can achieve substantial speedups compared to recomputation, up to several orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness centrality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 124–137. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Bauer, R., Wagner, D.: Batch dynamic single-source shortest-path algorithms: An experimental study. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 51–62. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bergamini, E., Meyerhenke, H.: Fully-dynamic approximation of betweenness centrality. CoRR, abs/1504.07091 (2015)

    Google Scholar 

  4. Bergamini, E., Meyerhenke, H., Staudt, C.: Approximating betweenness centrality in large evolving networks. In: 17th Workshop on Algorithm Engineering and Experiments, ALENEX 2015, pp. 133–146. SIAM (2015)

    Google Scholar 

  5. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 163–177 (2001)

    Article  MATH  Google Scholar 

  6. Brandes, U., Pich, C.: Centrality estimation in large networks. I. J. Bifurcation and Chaos 17(7), 2303–2318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. D’Andrea, A., D’Emidio, M., Frigioni, D., Leucci, S., Proietti, G.: Experimental evaluation of dynamic shortest path tree algorithms on homogeneous batches. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 283–294. Springer, Heidelberg (2014)

    Google Scholar 

  8. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Semi-dynamic algorithms for maintaining single-source shortest path trees. Algorithmica 22, 250–274 (2008)

    Article  MATH  Google Scholar 

  9. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness centrality. In: 10th Workshop on Algorithm Engineering and Experiments, ALENEX 2008, pp. 90–100. SIAM (2008)

    Google Scholar 

  10. Goel, K., Singh, R.R., Iyengar, S., Sukrit: A faster algorithm to update betweenness centrality after node alteration. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 170–184. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness centrality. In: SocialCom/PASSAT, pp. 11–20. IEEE (2012)

    Google Scholar 

  12. Kas, M., Carley, K.M., Carley, L.R.: An incremental algorithm for updating betweenness centrality and k-betweenness centrality and its performance on realistic dynamic social network data. Social Netw. Analys. Mining 4(1), 235 (2014)

    Article  Google Scholar 

  13. Kourtellis, N., De Francisci Morales, G., Bonchi, F.: Scalable online betweenness centrality in evolving graphs. IEEE Transactions on Knowledge and Data Engineering (99), 1 (2015)

    Google Scholar 

  14. Kunegis, J.: KONECT: the koblenz network collection. In: 22nd Int. World Wide Web Conf., WWW 2013, pp. 1343–1350 (2013)

    Google Scholar 

  15. Lee, M., Lee, J., Park, J.Y., Choi, R.H., Chung, C.: QUBE: a quick algorithm for updating betweenness centrality. In: 21st World Wide Web Conf. 2012, WWW 2012, pp. 351–360. ACM (2012)

    Google Scholar 

  16. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: 11th Int. Conf. on Knowledge Discovery and Data Mining, pp. 177–187. ACM (2005)

    Google Scholar 

  17. Nasre, M., Pontecorvi, M., Ramachandran, V.: Betweenness centrality – incremental and faster. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 577–588. Springer, Heidelberg (2014)

    Google Scholar 

  18. Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the shortest-path problem. Journal of Algorithms 21, 267–305 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling. In: 7th ACM Int. Conf. on Web Search and Data Mining (WSDM 2014), pp. 413–422. ACM (2014)

    Google Scholar 

  20. Roditty, L., Zwick, U.: On dynamic shortest paths problems. Algorithmica 61(2), 389–401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. von Looz, M., Staudt, C.L., Meyerhenke, H., Prutkin, R.: Fast generation of complex networks with underlying hyperbolic geometry (2015),

  22. Staudt, C., Sazonovs, A., Meyerhenke, H.: NetworKit: An interactive tool suite for high-performance network analysis (2014),

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Elisabetta Bergamini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergamini, E., Meyerhenke, H. (2015). Fully-Dynamic Approximation of Betweenness Centrality. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics