Skip to main content

Provenancing Bronze: Exclusion, Inclusion, Uniqueness, and Occam’s Razor

  • Chapter
Isotopic Landscapes in Bioarchaeology

Abstract

The task of identifying the provenance of archaeological objects is often called “fingerprinting”. Amongst the evidence currently used are chemical and isotopic compositions. In contrast to human fingerprints, which according to present forensic knowledge are unique, archaeometric fingerprinting is not yet able to identify with certainty the source(s). Exclusion is more decisive than inclusion: according to archaeometric arguments an artefact can be certainly incompatible with a number of sources, but can be possibly compatible with a number of others. A judicious combination of several chemical and isotopic indicators can vastly reduce the number of ambiguous assignments and may ultimately lead to a very successful archaeological tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Addis A (2013) Late bronze age metallurgy in the Italian Eastern Alps: copper smelting slags and mine exploitation. PhD thesis, Università di Padova, 222 p

    Google Scholar 

  • Albarède F, Blichert-Toft J, Desaulty A-M (2012) A geological perspective on the use of Pb isotopes in archaeometry. Archaeometry 54:853–867

    Article  Google Scholar 

  • Artioli G, Angelini I, Nimis P, Addis A, Villa IM (2014) Prehistoric copper metallurgy in the Italian Eastern Alps: recent results. Hist Metall 47:51–59

    Google Scholar 

  • Bigazzi G, Bonadonna FP (1973) Fission track dating of the obsidian on Lipari Island (Italy). Nature 242:322–323

    Article  Google Scholar 

  • BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, OIML, JCGM (2012) The international vocabulary of metrology – basic and general concepts and associated terms, 3rd edn, JCGM 200:2012. http://www.iso.org/sites/JCGM/VIM-introduction.htm. Retrieved on 21 Dec 2014

  • Boni M, Di Maio G, Frei R, Villa IM (2000) Lead isotopic evidence for a mixed provenance of Roman water pipes from Pompeii. Archaeometry 42:201–208

    Article  Google Scholar 

  • Bray PJ, Pollard AM (2012) A new interpretative approach to the chemistry of copper-alloy objects: source, recycling and technology. Antiquity 86:853–867

    Article  Google Scholar 

  • Brill BA (1989) Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia. Can Mineral 27:263–274

    Google Scholar 

  • Budd P, Taylor T (2010) The faerie smith meets the bronze industry: magic versus science in the interpretation of prehistoric metal-making. World Archeol 27:133–143

    Article  Google Scholar 

  • Cattin F, Guénette-Beck B, Curdy P, Meisser N, Ansermet S, Hofmann B, Kündig R, Hubert V, Wörle M, Hametner K, Günther D, Wichser A, Ulrich A, Villa IM, Besse M (2011) Provenance of early Bronze age metal artefacts in Western Switzerland using elemental and lead isotopic compositions and their possible relation with copper minerals of the nearby Valais. J Archaeol Sci 38:1221–1233

    Article  Google Scholar 

  • Cattin F, Merkl MB, Strahm C, Villa IM (2015) Elemental and lead isotopic data of copper finds from the Singen cemetery, Germany – a methodological approach of investigating Early Bronze Age networks. In: Hauptmann A, Modarressi-Tehrani D (eds) Archaeometallurgy in Europe, III, pp 81–94

    Google Scholar 

  • Chenery S, Cook JM, Stylus M, Cameron EM (1995) Determination of the 3-dimensional distributions of precious metals in sulfide minerals by laser-ablation microprobe inductively coupled plasma-mass spectrometry (LAMP-ICP-MS). Chem Geol 124:55–65

    Article  Google Scholar 

  • Friedman AM, Conway M, Kastner M, Milsted J, Metta D, Fields PR, Olsen E (1966) Copper artifacts: correlation with some types of copper ores. Science 152:1504–1506

    Article  Google Scholar 

  • Grögler N, Geiss J, Grünenfelder M, Houtermans FC (1966) Isotopenuntersuchungen zur Bestimmung der Herkunft römischer Bleirohre und Bleibarren. Z Naturforsch 21:1167–1172

    Google Scholar 

  • Haustein M, Gillis C, Pernicka E (2010) Tin-isotopy – a new method for solving old questions. Archaeometry 52:816–832

    Article  Google Scholar 

  • Heri AR (2013) Geochemistry, geochronology and isotope geochemistry of Eocene dykes intruding the Ladakh Batholith. PhD thesis, University of Hong Kong, 317 p

    Google Scholar 

  • Heri AR, King JA, Rolfo F, Aitchison JC, Bahl J, Villa IM (2014) Geochemistry and geobarometry of Eocene dykes intruding the Ladakh batholith. Abstract, 29th Himalaya Karakorum Tibet International Workshop

    Google Scholar 

  • Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from Eastern Australian volcanic-hosted massive sulfide deposits. Econ Geol 90:1167–1196

    Article  Google Scholar 

  • Junghans S, Sangmeister E, Schröder M (1968) Kupfer und Bronze in der frühen Metallzeit Europas (Studien zu den Anfängen der Metallurgie 2). Gebr. Mann, Berlin

    Google Scholar 

  • Klein S, Lahaye Y, Brey GP, von Kaenel H-M (2004) The early Roman imperial AES coinage II: tracing the copper sources by analysis of lead and copper isotopes—copper coins of Augustus and Tiberius. Archaeometry 46:469–480

    Article  Google Scholar 

  • Kramers JD, Tolstikhin IN (1997) Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem Geol 139:75–110

    Article  Google Scholar 

  • Krause R (1988) Die endneolithischen und frühbronzeitlichen Grabfunde auf der Nordstadtterrasse von Singen am Hohentwiel. Forsch Ber Vor- und Frühgesch Baden-Württemberg 32, Stuttgart

    Google Scholar 

  • Lazzarini L, Visonà D, Giamello M, Villa IM (2012) Archaeometric characterisation of one Tunisian and two Italian calcareous alabasters used in antiquity. In: Proceedings, IX ASMOSIA conference, Tarragona, pp 436–444

    Google Scholar 

  • Lechtman H, Klein S (1999) The production of copper-arsenic alloys (arsenic bronze) by cosmelting: modern experiment, ancient practice. J Archaeol Sci 26:497–526

    Article  Google Scholar 

  • Lin M, Zhao YG, Zhao LF, Li LL, Wang F, Zhu LC, Hu XN, Ning W (2015) Tracing origins of uranium ore concentrates (UOCs) by multidimensional statistics analysis of rare-earth impurities. J Anal Atom Spectrom 30:396–402

    Article  Google Scholar 

  • Mondillo N, Boni M, Balassone G, Villa IM (2014) The Yanque prospect (Peru): from polymetallic Zn-Pb mineralization to a nonsulfide deposit. Econ Geol 109:1735–1762

    Article  Google Scholar 

  • Oberthür T, Cabri LJ, Weiser TW, McMahon G, Muller P (1997) Pt, Pd and other trace elements in sulfides of the main sulfide zone, Great Dyke, Zimbabwe: a reconnaissance study. Can Mineral 35:597–609

    Google Scholar 

  • Pollard AM, Bray PJ, Gosden C (2014) Is there something missing in scientific provenance studies of prehistoric artefacts? Antiquity 88:625–631

    Article  Google Scholar 

  • Rehren T, Pernicka E (2008) Coins, artefacts and isotopes – archaeometallurgy and archaeometry. Archaeometry 50:232–248

    Article  Google Scholar 

  • Stos-Gale ZA, Gale NH (2009) Metal provenancing using isotopes and the Oxford archaeological lead isotope database (OXALID). Anthropol Archaeol Sci 1:195–213

    Article  Google Scholar 

  • Tanahashi M, Fujinaga T, Su Z, Takeda K, Sohn HY, Yamauchi C (2005) Effects of coexisting oxygen and antimony in molten copper on rate of arsenic elimination from the copper phase by the use of Na2CO3 slag. Mater Trans 46:2180–2189

    Article  Google Scholar 

  • Villa IM (2001) Radiogenic isotopes in fluid inclusions. Lithos 55:115–124

    Article  Google Scholar 

  • Villa IM (2009) Lead isotopic measurements in archeological objects. Archaeol Anthropol Sci 1:149–153

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Prof. Gisela Grupe for organizing the workshop in Munich and to all colleagues there for stimulating discussions. Long discussions with A. R. Heri on the applications of PCA to geochemical problems are gratefully acknowledged; any remaining misunderstandings are solely my responsibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor M. Villa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Villa, I.M. (2016). Provenancing Bronze: Exclusion, Inclusion, Uniqueness, and Occam’s Razor. In: Grupe, G., McGlynn, G. (eds) Isotopic Landscapes in Bioarchaeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48339-8_8

Download citation

Publish with us

Policies and ethics