Skip to main content

Field Experimental Design for a Watershed Observing System

  • Reference work entry
  • First Online:
Observation and Measurement of Ecohydrological Processes

Part of the book series: Ecohydrology ((ECOH,volume 2))

  • 789 Accesses

Abstract

A watershed, regarded as the ideal unit for practicing earth system science, possesses all of the complexities of the land surface system. Thus, building a watershed observing system and conducting a field experiment for the observation of the ecohydrological processes at watershed scale is the best way to understand the complexities of the land surface system. This chapter presents an overview on the designing and conducting of a field experiment and establishing a watershed observing system. Several key scientific problems are addressed: (1) why we need a watershed observing system, (2) what are the characteristics of a watershed observing system, and (3) how can we design and establish a watershed observing system. We believe that a watershed observing system is the prerequisite of the watershed science development and helping to improve the understanding of the ecohydrological processes. The watershed observing system possesses the multidiscipline and multiscale characteristics. It must be able to capture the spatiotemporal heterogeneity and to quantify the uncertainty of the key ecohydrological variables. Finally, by taking two sequential watershed-scale observation experiments as example, we furthermore illustrate how to design and establish a watershed observing system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • B. Aylward, Towards watershed science that matters. Hydrol. Process. 19(13), 2643–2647 (2005)

    Article  Google Scholar 

  • G.D. Cheng, Integrated management of the water-ecology-economy system in the Heihe River basin (Science Press, Beijing, 2009), p. 581

    Google Scholar 

  • G. Cheng, X. Li, Integrated research methods in watershed science. Sci. China-Earth Sci. 58, 1159–1168 (2015)

    Article  Google Scholar 

  • G.D. Cheng, X. Li, W.Z. Zhao, Z.M. Xu, Q. Feng, S.C. Xiao, H.L. Xiao, Integrated study of the water-ecosystem-economy in the Heihe River basin. Natl. Sci. Rev. 1, 413–428 (2014)

    Article  Google Scholar 

  • GEO (Group on Earth Observations), Global Earth Observation System of Systems GEOSS 10-Year Implementation Plan Reference Document (2005), pp. 209

    Google Scholar 

  • J.W. Guo, F. Liu, Automatic data quality control of observations in wireless sensor network. IEEE Geosci. Remote Sens. Lett. 12(4), 716–720 (2015)

    Article  Google Scholar 

  • R. Jin, X. Li, B.P. Yan, X.H. Li, W.M. Luo, M.G. Ma, J.W. Guo, J. Kang, Z.L. Zhu, a.S.J. Zhao, A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream area of the Heihe River basin, China. IEEE Geosci. Remote Sens. Lett. 11(11), 2015–2019 (2014)

    Article  Google Scholar 

  • R. Jin, X. Li, S.M. Liu, Understanding the heterogeneity of soil moisture and evapotranspiration using multiscale observations from satellites, airborne sensors, and a ground-based observation matrix. IEEE Geosci. Remote Sens. Lett. 14(11), 2132–2136 (2017)

    Article  Google Scholar 

  • J. Kang, R. Jin, X. Li, C.F. Ma, J. Qin, Y. Zhang, High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and MODIS apparent thermal inertia in the Babao River basin, China. Remote Sens. Environ. 191, 232–245 (2017)

    Article  Google Scholar 

  • X. Li, G.D. Cheng, On the watershed observing and modeling systems. Adv. Earth Sci. 23(7), 756–764 (2008)

    Google Scholar 

  • X. Li, X.W. Li, Z.Y. Li, M.G. Ma, J. Wang, Q. Xiao, Q. Liu, T. Che, E.X. Chen, G.J. Yan, Z.Y. Hu, L.X. Zhang, R.Z. Chu, P.X. Su, Q.H. Liu, S.M. Liu, J.D. Wang, Z. Niu, Y. Chen, R. Jin, W.Z. Wang, Y.H. Ran, X.Z. Xin, H.Z. Ren, Watershed allied telemetry experimental research. J. Geophys. Res. Atmos. 114 (2009). https://doi.org/10.1029/2008JD011590

  • X. Li, X.W. Li, Z.Y. Li, Watershed allied Telemetry Experimental research (WATER) datasets are available for open access (Chinese with English abstract). Remote Sens. Technol. Appl. 25(6), 761–764 (2010)

    Google Scholar 

  • X. Li, X.W. Li, Z.Y. Li, J. Wang, M.G. Ma, Q. Liu, Q. Xiao, Z.Y. Hu, T. Che, J.M. Wang, Q.H. Liu, E.X. Che, G.J. Yan, S.M. Liu, W.Z. Wang, L.X. Zhang, J.D. Wang, Z. Niu, R. Jin, Y.H. Ran, L.X. Wang, Progress on the watershed allied telemetry experimental research (WATER). Remote Sens. Technol. Appl. 27(5), 637–649 (2012a.) (in Chinese with English Abstract)

    Google Scholar 

  • X. Li, Q. Liu, Q.H. Liu, J. Wang, M.G. Ma, Q. Xiao, T. Che, R. Jin, Y.H. Ran, Progress on the watershed allied telemetry experimental research (WATER): Remote sensing of key hydrological and ecological parameters. Remote Sens. Technol. Appl. 27(5), 650–662 (2012b.) in Chinese with English Abstract

    Google Scholar 

  • X. Li, G.D. Cheng, S.M. Liu, Q. Xiao, M.G. Ma, R. Jin, T. Che, Q.H. Liu, W.Z. Wang, Y. Qi, J.G. Wen, H.Y. Li, G.F. Zhu, J.W. Guo, Y.H. Ran, S.G. Wang, Z.L. Zhu, J. Zhou, X.L. Hu, Z.W. Xu, Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 94, 1145–1160 (2013)

    Article  Google Scholar 

  • X. Li, R. Jin, S.M. Liu, Y. Ge, Q. Xiao, Q.H. Liu, M.G. Ma, Y.H. Ran, Upscaling research in HiWATER: Progress and prospects. J. Remote Sens. 20(5), 1993–2002 (2016)

    Google Scholar 

  • X. Li, S.M. Liu, Q. Xiao, M.G. Ma, R. Jin, T. Che, W.Z. Wang, X.L. Hu, Z.W. Xu, J.G. Wen, L.X. Wang, A multiscale dataset for understanding complex ecohydrological processes in a heterogeneous oasis system. Sci. Data 4, 170083 (2017). https://doi.org/10.1038/sdata.2017.83

    Article  Google Scholar 

  • S.M. Liu, Z.W. Xu, L.S. Song, Q.Y. Zhao, Y. Ge, T.R. Xu, Y.F. Ma, Z.L. Zhu, Z.Z. Jia, F. Zhang, Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 230–231, 97–113 (2016)

    Article  Google Scholar 

  • C.F. Ma, W.Z. Wang, X.J. Han, X. Li, Soil moisture retrieval in the Heihe River basin based on the real thermal inertia method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(3), 1460–1467 (2013)

    Article  Google Scholar 

  • M.G. Ma, T. Che, X. Li, Q. Xiao, K. Zhao, X.P. Xin, A prototype network for remote sensing validation in China. Remote Sens. 7(5), 5187–5202 (2015). https://doi.org/10.3390/rs70505187

    Article  Google Scholar 

  • J.J. McDonnell, M. Sivapalan, K. Vache, S. Dunn, G. Grant, R. Haggerty, C. Hinz, R. Hooper, J. Kerchner, M.L. Roderick, J. Selker, M. Weiler, Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology. Water Resour. Res. 43, W07301 (2007). https://doi.org/10.1029/2006WR005467

    Article  Google Scholar 

  • X.H. Mu, S. Huang, H.Z. Ren, G.J. Yan, W. Song, G. Ruan, Validating GEOV1 fractional vegetation cover derived from coarse-resolution remote sensing images over croplands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 439–446 (2015)

    Article  Google Scholar 

  • NRC (Committee on Opportunities in the Hydrologic Sciences Water Science and Technology Board Commission on Geosciences, Environment, and Resources), Opportunities in the Hydrologic Sciences (National Academy Press, Washington, DC, 1991), p. 368

    Google Scholar 

  • NRC (Committee on River Science at the U.S. Geological Survey), River Science at the U.S. Geological Survey (National Academies Press, Washington, DC, 2007), p. 206

    Google Scholar 

  • NRC (Committee on Scientific Accomplishments of Earth Observations from Space), Earth Observations from Space: The First 50 Years of Scientific Achievements (National Academies Press, Washington, DC, 2008), p. 142

    Google Scholar 

  • NRC (Committee on U.S. Geological Survey), Watershed Research in the U.S. Geological Survey (National Academies Press, Washington, DC, 1997), p. 96

    Google Scholar 

  • NRC (Committee on Watershed Management), New Strategies for America's Watersheds (National Academies Press, Washington, DC, 1999), p. 328

    Google Scholar 

  • X.D. Pan, X. Li, G.D. Cheng, H.Y. Li, X.B. He, Development and evaluation of a river-basin-scale high spatio-temporal precipitation data set using the WRF model: a case study of the Heihe River basin. Remote Sens. 7(7), 9230–9252 (2015)

    Article  Google Scholar 

  • X.D. Pan, X. Li, G.D. Cheng, Y. Hong, Effects of 4D-Var data assimilation using remote sensing precipitation products in a WRF model over the complex terrain of an arid region river basin. Remote Sens. 9(9), 963 (2017). https://doi.org/10.3390/rs9090963

    Article  Google Scholar 

  • Y.H. Qu, Y.Q. Zhu, W.C. Han, J.D. Wang, M.G. Ma, Crop leaf area index observations with a wireless sensor network and its potential for validating remote sensing products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(2), 431–444 (2014)

    Article  Google Scholar 

  • H. Savenije, HESS opinions “the art of hydrology”. Hydrol. Earth Syst. Sci. 13(2), 157–161 (2009)

    Article  Google Scholar 

  • M.S. Seyfried, B.P. Wilcox, Scale and the nature of spatial variability: field examples having implications for hydrological modeling. Water Resour. Res. 31, 173–184 (1995)

    Article  Google Scholar 

  • S. Uhlenbrook, Catchment hydrology – a science in which all processes are preferential. Hydrol. Process. 20(16), 3581–3585 (2006)

    Article  Google Scholar 

  • J. Wang, G. Christakos, M. Hu, Modeling spatial means of surfaces with stratified non-homogeneity. IEEE Trans. Geosci. Remote Sens. 47(12), 4167–4174 (2009)

    Article  Google Scholar 

  • S.G. Wang, X. Li, Y. Ge, R. Jin, M.G. Ma, Q.H. Liu, J.G. Wen, S.M. Liu, Validation of regional-scale remote sensing products in China: from site to network. Remote Sens. 8(12), 980 (2016). https://doi.org/10.3390/rs8120980

    Article  Google Scholar 

  • C.F. Xia, J. Li, Q.H. Liu, Monitoring vegetation phenology in China using time-series MODIS LAI data. IEEE Geosci. Remote Sens. Symp., 48–51 (2012). https://doi.org/10.1109/IGARSS.2012.6350912. Munich, Germany

  • Z.W. Xu, S.M. Liu, X. Li, S.J. Shi, J.M. Wang, Z.L. Zhu, T.R. Xu, W.Z. Wang, M.G. Ma, Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. Res. Atmos. 118, 13140–13157 (2013)

    Article  Google Scholar 

  • B. Zhong, A. Yang, A. Nie, Y. Yao, H. Zhang, S. Wu, Q. Liu, Finer resolution land-cover mapping using multiple classifiers and multisource remotely sensed data in the Heihe River basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(10), 4973–4992 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (grant No. 91425303), and the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA20100104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, X., Cheng, G., Ma, C., Ge, Y., Zhang, Z. (2019). Field Experimental Design for a Watershed Observing System. In: Li, X., Vereecken, H. (eds) Observation and Measurement of Ecohydrological Processes. Ecohydrology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48297-1_15

Download citation

Publish with us

Policies and ethics