Skip to main content

Genetics

  • Chapter
  • 2271 Accesses

Abstract

DNA is the blueprint of our human body, and the variations in DNA are the source for the phenotypes of different individuals. With the advancement in the DNA sequencing technologies and the completion of the human HapMap project, we can now better determine the status of risk or causative genetic variants that may lead to the development of disease. Not only can we make use of the technologies to discover every type of DNA variations in the genome, such as single nucleotide polymorphisms and microsatellites, but other variations such as rare alleles and the copy number variations can also be unmasked. These variations may explain some more genetics effects for disease phenotypes and can be used as markers to study the relationship between genotypes and phenotypes. The use of linkage analysis on familial subjects, case-control association studies using population-based subjects on biologically relevant candidate genes or case-control association studies on a genome-wide scale using gene-chip arrays have made mapping of the disease gene possible. Scoliosis is a condition in which the spine becomes deformed and bent abnormally. It affects millions of growing children in the world. The cause is still ill defined. However, it is believed that scoliosis is a complex genetic disorder caused by multiple genes with small effects combined with environmental factors. Candidate-gene and genome-wide association studies using case-control design are the best tools to analyze complex disorders like scoliosis. We believe that with better understanding of human genetics, the cause of scoliosis will likely be elucidated in the not-too-distant future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abecasis GR, Cherny SS, Cookson WO et al (2002) Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  CAS  PubMed  Google Scholar 

  2. Alden KJ, Marosy B, Nzegwu N, Justice CM, Wilson AF, Miller NH (2006) Idiopathic scoliosis: identification of candidate regions on chromosome 19p13. Spine 31:1815–1819

    Article  PubMed  Google Scholar 

  3. Andersen MO, Thomsen K, Kyvik KO (2007) Adolescent idiopathic scoliosis in twins – a population-based survey. Spine 32:927–930

    Article  PubMed  Google Scholar 

  4. Axenovich TI, Zaidman AM, Zorkoltseva IV, Tregubova IL, Borodin PM (1999) Segregation analysis of idiopathic scoliosis: demonstration of a major gene effect. Am J Med Genet 86:389–394

    Article  CAS  PubMed  Google Scholar 

  5. Bao S, Jiang R, Kwan W, Wang B, Ma X, Song YQ (2011) Evaluation of next-generation sequencing software in mapping and assembly. J Hum Genet 56(6):406–414

    Article  CAS  PubMed  Google Scholar 

  6. Barnes AM, Chang W, Morello R, Cabral WA, Weis M, Eyre DR, Leikin S, Makareeva E, Kuznetsova N, Uveges TE, Ashok A, Flor AW, Mulvihill JJ, Wilson PL, Sundaram UT, Lee B, Marini JC (2006) Deficiency of cartilage-associated protein in recessive lethal osteogenesis imperfecta. New Engl J Med 355:2757–2764

    Article  CAS  PubMed  Google Scholar 

  7. Bateman JF, Wilson R, Freddi S, Lamande SR, Savarirayan R (2005) Mutations of COL10A1 in Schmid metaphyseal chondrodysplasia. Hum Mutat 25:525–534

    Article  CAS  PubMed  Google Scholar 

  8. Bulman MP, Kusumi K, Frayling TM, Mckeown C, Garrett C, Lander ES, Krumlauf R, Hattersley AT, Ellard S, Turnpenny PD (2000) Mutations in the human delta homologue, dll3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 24:438–441

    Article  CAS  PubMed  Google Scholar 

  9. Burmeister M (1999) Basic concepts in the study of diseases with complex genetics. Biol Psychiatry 45:522–532

    Article  CAS  PubMed  Google Scholar 

  10. Chan V, Fong GC, Luk KD, Yip B, Lee MK, Wong MS, Lu DD, Chan TK (2002) A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am J Hum Genet 71:401–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chen Z, Tang NL, Cao X, Qiao D, Yi L, Cheng JC, Qiu Y (2009) Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur J Hum Genet 17:525–532

    Article  PubMed Central  PubMed  Google Scholar 

  12. Cheung KM, Wang T, Qiu GX, Luk KD (2007) Recent advances in the aetiology of adolescent idiopathic scoliosis. Int Orthop 15:2:16

    Google Scholar 

  13. Connor JM, Conner AN, Connor RA, Tolmie JL, Yeung B, Goudie D (1987) Genetic aspects of early childhood scoliosis. Am J Med Genet 27:419–424

    Article  CAS  PubMed  Google Scholar 

  14. Cordell HJ, Clayton DG (2005) Genetic association studies. Lancet 366:1121–1131

    Article  PubMed  Google Scholar 

  15. Crawford DC, Nickerson DA (2005) Definition and clinical importance of haplotypes. Annu Rev Med 56:303–320

    Article  CAS  PubMed  Google Scholar 

  16. Editorial (1999) Freely associating. Nat Genet 22:1–2

    Article  Google Scholar 

  17. Edery P, Margaritte-jeannin P, Biot B, Labalme A, Bernard JC, Chastang J, Kassai B, Plais MH, Moldovan F, Clerget-darpoux F (2011) New disease gene location and high genetic heterogeneity in idiopathic scoliosis. Eur J Hum Genet 19:865–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Erol B, Tracy MR, Dormans JP, Zackai EH, Maisenbacher MK, O’brien ML, Turnpenny PD, Kusumi K (2004) Congenital scoliosis and vertebral malformations: characterization of segmental defects for genetic analysis. J Pediatr Orthop 24:674–682

    Article  PubMed  Google Scholar 

  19. Fan YH, Song YQ, Chan D, Takahashi Y, Ikegawa S, Matsumoto M, Kou I, Cheah KS, Sham P, Cheung KM, Luk KD (2012) Snp rs11190870 near lbx1 is associated with adolescent idiopathic scoliosis in southern Chinese. J Hum Genet 57:244–246

    Article  CAS  PubMed  Google Scholar 

  20. Fei Q, Wu Z, Wang H, Zhou X, Wang N, Ding Y, Wang Y, Qiu G (2010) The association analysis of Tbx6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population. Spine (Phila Pa 1976) 35:983–988

    Article  Google Scholar 

  21. Gao W, Peng Y, Liang G, Liang A, Ye W, Zhang L, Sharma S, Su P, Huang D (2013) Association between common variants near Lbx1 and adolescent idiopathic scoliosis replicated in the Chinese Han population. PLoS One 8:E53234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, Weber S, Devroy S, Swaney S, Dobbs M, Morcuende J, Sheffield V, Lovett M, Bowcock A, Herring J, Wise C (2007) CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet 80:957–965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Geoffroy Saint Hilaire E (1820) Differents etats de pesanteur des oeufs au commencement et a la fin de l’incubation. J Complement Sci Med 7:271

    Google Scholar 

  24. Giampietro PF (2012) Genetic aspects of congenital and idiopathic scoliosis. Scientifica 2012:152365

    Article  PubMed Central  PubMed  Google Scholar 

  25. Giampietro PF, Blank RD, Raggio CL, Merchant S, Jacobsen FS, Faciszewski T, Shukla SK, Greenlee AR, Reynolds C, Schowalter DB (2003) Congenital and idiopathic scoliosis: clinical and genetic aspects. Clin Med Res 1:125–136

    Article  PubMed Central  PubMed  Google Scholar 

  26. Giampietro PF, Raggio CL, Reynolds CE, Shukla SK, Mcpherson E, Ghebranious N, Jacobsen FS, Kumar V, Faciszewski T, Pauli RM, Rasmussen K, Burmester JK, Zaleski C, Merchant S, David D, Weber JL, Glurich I, Blank RD (2005) An analysis of Pax1 in the development of vertebral malformations. Clin Genet 68:448–453

    Article  CAS  PubMed  Google Scholar 

  27. Giampietro PF, Raggio CL, Reynolds C, Ghebranious N, Burmester JK, Glurich I, Rasmussen K, Mcpherson E, Pauli RM, Shukla SK, Merchant S, Jacobsen FS, Faciszewski T, Blank RD (2006) Dll3 as a candidate gene for vertebral malformations. Am J Med Genet A 140:2447–2453

    Article  PubMed  Google Scholar 

  28. Giampietro PF, Raggio CL, Blank RD (2012) Use of synteny conversion in identification of candidate genes for somitogenesis in humans. Open J Orthop 2:62–68

    Article  Google Scholar 

  29. Gudbjartsson DF, Jonasson K, Frigge ML et al (2000) Allegro, a new computer program for multipoint linkage analysis. Nat Genet 25:12–13

    Article  CAS  PubMed  Google Scholar 

  30. Humphries SE, Luong LA, Talmud PJ et al (1998) The 5A/6A polymorphism in the promoter of the stromelysin-1 (MMP-3) gene predicts progression of angiographically determined coronary artery disease in men in the LOCAT gemfibrozil study. Lopid Coronary Angiography Trial. Atherosclerosis 139:49–56

    Article  CAS  PubMed  Google Scholar 

  31. Ingalls TH, Curley FJ (1957) Principles governing the genesis of congenital malformations induced in mice by hypoxia. N Engl J Med 257:1121–1127

    Article  CAS  PubMed  Google Scholar 

  32. Inoue M, Minami S, Nakata Y, Kitahara H, Otsuka Y, Isobe K, Takaso M, Tokunaga M, Nishikawa S, Maruta T, Moriya H (2002) Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine 27:2357–2362

    Article  PubMed  Google Scholar 

  33. Justice CM, Miller NH, Marosy B, Zhang J, Wilson AF (2003) Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine 28:589–594

    PubMed  Google Scholar 

  34. Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, Mabuchi A, Kotani A, Kawakami A, Yamamoto S, Uchida A, Nakamura K, Notoya K, Nakamura Y, Ikegawa S (2005) An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet 37(2):138–144

    Article  CAS  PubMed  Google Scholar 

  35. Koboldt DC, Steinberg KM, Larson D, Wilson RK, Mard ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J, Qiu X, Sharma S, Takimoto A, Ogura Y, Jiang H, Yan H, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Hosono N, Tsuji T, Suzuki T, Sudo H, Kotani T, Yonezawa I, Londono D, Gordon D, Herring JA, Watanabe K, Chiba K, Kamatani N, Jiang Q, Hiraki Y, Kubo M, Toyama Y, Tsunoda T, Wise CA, Qiu Y, Shukunami C, Matsumoto M, Ikegawa S (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45(6):676–679

    Article  CAS  PubMed  Google Scholar 

  37. Kruglyak L, Daly MJ, Reeve-Daly MP et al (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Kruglyak L, Lander ES (1995) Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet 57:439–454

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  40. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  41. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA, Hood L, Spinner NB (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16:243–251

    Article  CAS  PubMed  Google Scholar 

  42. Londono D, Kou I, Johnson TA, Sharma S, Ogura Y, Tsunoda T, Takahashi A, Matsumoto M, Herring JA, Lam TP, Wang X, Tam EM, Song YQ, Fan YH, Chan D, Cheah KS, Qiu X, Jiang H, Huang D; Japanese Scoliosis Clinical Research Group, TSRHC iS Clinical Group, The International Consortium for Scoliosis Genetics, Su P, Sham P, Cheung KM, Luk KD, Gordon D, Qiu Y, Cheng J, Tang N, Ikegawa S, Wise CA (2014) A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet 51(6):401–406. doi:10.1136/jmedgenet-2013-102067

    Google Scholar 

  43. Maisenbacher MK, Han JS, O’brien ML, Tracy MR, Erol B, Schaffer AA, Dormans JP, Zackai EH, Kusumi K (2005) Molecular analysis of congenital scoliosis: a candidate gene approach. Hum Genet 116:416–419

    Article  CAS  PubMed  Google Scholar 

  44. Marosy B, Justice CM, Nzegwu N, Kumar G, Wilson AF, Miller NH (2006) Lack of association between the aggrecan gene and familial idiopathic scoliosis. Spine 31:1420–1425

    Article  PubMed  Google Scholar 

  45. Miller NH, Marosy B, Justice CM, Novak SM, Tang EY, Boyce P, Pettengil J, Doheny KF, Pugh EW, Wilson AF (2006) Linkage analysis of genetic loci for kyphoscoliosis on chromosomes 5p13, 13q13.3, and 13q32. Am J Med Genet A 140:1059–1068

    Article  PubMed  Google Scholar 

  46. Miller NH (2007) Genetics of familial idiopathic scoliosis. Clin Orthop Related Res 462:6–10

    Article  Google Scholar 

  47. Miyake A, Kou I, Takahashi Y, Johnson TA, Ogura Y, Dai J, Qiu X, Takahashi A, Jiang H, Yan H, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Hosono N, Tsuji T, Suzuki T, Sudo H, Kotani T, Yonezawa I, Kubo M, Tsunoda T, Watanabe K, Chiba K, Toyama Y, Qiu Y, Matsumoto M, Ikegawa S (2013) Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3. PLoS One 8:E72802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Montanaro L, Parisini P, Greggi T, Di Silvestre M, Campoccia D, Rizzi S, Arciola CR (2006) Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis 1:21

    Article  PubMed Central  PubMed  Google Scholar 

  49. Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304

    Article  CAS  PubMed  Google Scholar 

  50. Morocz M, Czibula A, Grozer ZB, Szecsenyi A, Almos PZ, Rasko I, Illes T (2011) Association study of BMP4, IL6, Leptin, MMP3, and MTNR1B gene promoter polymorphisms and adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 36:E123–E130

    Article  Google Scholar 

  51. Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Ocaka L, Zhao C, Reed JA, Ebenezer ND, Brice G, Morley T, Mehta M, O’dowd J, Weber JL, Hardcastle AJ, Child AH (2007) Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis (AIS) to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J Med Genet 45(2):87–92

    Article  PubMed  Google Scholar 

  53. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC (1997) Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 16:235–242

    Article  CAS  PubMed  Google Scholar 

  54. Ogilvie JW, Braun J, Argyle V, Nelson L, Meade M, Ward K (2006) The search for idiopathic scoliosis genes. Spine 31:679–681

    Article  PubMed  Google Scholar 

  55. Ott J (1999) Analysis of human genetic linkaged. Johns Hopkins University Press, Baltimore

    Google Scholar 

  56. Pagon RA (2002) Genetic testing for disease susceptibilities: consequences for genetic counseling. Trends Mol Med 8:306–307

    Article  PubMed  Google Scholar 

  57. Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P (2012) Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop 36:671–677

    Article  PubMed Central  PubMed  Google Scholar 

  58. Penrose LS (1953) The general purpose sibpair linkage test. Ann Eugen 18:120–124

    Article  CAS  PubMed  Google Scholar 

  59. Peters T, Sedlmeier R (2006) Current methods for high-throughput detection of novel DNA polymorphisms. Drug Discov Today 3:123–129

    Article  Google Scholar 

  60. Pourquie O (2011) Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145:650–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pritchard JK, Cox NJ (2002) The allelic architecture of human disease genes: common disease-common variant… or not? Hum Mol Genet 11:2417–2423

    Article  CAS  PubMed  Google Scholar 

  62. Qiu XS, Tang NL, Yeung HY, Lee KM, Hung VW, Ng BK, Ma SL, Kwok RH, Qin L, Qiu Y, Cheng JC (2007) Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine 32:1748–1753

    Article  PubMed  Google Scholar 

  63. Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC (2007) Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res 462:53–58

    Article  PubMed  Google Scholar 

  64. Raggio CL, Giampietro PF, Dobrin S, Zhao C, Dorshorst D, Ghebranious N, Weber JL, Blank RD (2009) A novel locus for adolescent idiopathic scoliosis on chromosome 12p. J Orthop Res 27:1366–1372

    Article  PubMed Central  PubMed  Google Scholar 

  65. Rajab A, Kunze J, Mundlos S (2004) Spondyloepiphyseal dysplasia Omani type: a new recessive type of SED with progressive spinal involvement. Am J Med Genet 126A:413–419

    Article  CAS  PubMed  Google Scholar 

  66. Salehi LB, Mangino M, De Serio S, De Cicco D, Capon F, Semprini S, Pizzuti A, Novelli G, Dallapiccola B (2002) Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum Genet 111:401–404

    Article  CAS  PubMed  Google Scholar 

  67. Sanlaville D, Etchevers HC, Gonzales M, Martinovic J, Clement-Ziza M, Delezoide A-L, Aubry M-C, Pelet A, Chemouny S, Cruaud C, Audollent S, Esculpavit C et al (2006) Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J Med Genet 43:211–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Seki S, Kawaguchi Y, Chiba K et al (2005) A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37:607–612

    Article  CAS  PubMed  Google Scholar 

  69. Sham P (1998) Statistics in human genetics. Arnold, London

    Google Scholar 

  70. Shands AR Jr, Eisberg HB (1955) The incidence of scoliosis in the state of Delaware: a study of 50,000 Minifilms of the chest made during a survey for tuberculosis. J Bone Joint Surg Am 37-a:1243–1249

    PubMed  Google Scholar 

  71. Sharma S, Gao X, Londono D, Devroy SE, Mauldin KN, Frankel JT, Brandon JM, Zhang D, Li QZ, Dobbs MB, Gurnett CA, Grant SF, Hakonarson H, Dormans JP, Herring JA, Gordon D, Wise CA (2011) Genome-wide Association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet 20:1456–1466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Song YQ, Cheung KMC, Ho DWH, Poon SCS, Chiba K, Kawaguchi Y, Hirose Y, Alini M, Yee AFY, Leong JCY, Luk KDK, Yip SP, Cheah KSE, Sham P, Ikegawa S, Chan D (2008) Asporin D14 allele increases the risk of lumbar disc degeneration in Chinese and Japanese populations. Am J Hum Genet 82(3):744–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Sparrow DB, Chapman G, Smith AJ, Mattar MZ, Major JA, O’reilly VC, Saga Y, Zackai EH, Dormans JP, Alman BA, Mcgregor L, Kageyama R, Kusumi K, Dunwoodie SL (2012) A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 149:295–306

    Article  CAS  PubMed  Google Scholar 

  74. Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL (2006) Mutation of the lunatic fringe gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78:28–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Sparrow DB, Sillence D, Wouters MA, Turnpenny PD, Dunwoodie SL (2010) Two novel missense mutations in hairy-and-enhancer-of-split-7 in a family with spondylocostal dysostosis. Eur J Hum Genet 18:674–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Hosono N, Kamatani N, Tsunoda T, Toyama Y, Kubo M, Matsumoto M, Ikegawa S (2011) A genome-wide association study identifies common variants near Lbx1 associated with adolescent idiopathic scoliosis. Nat Genet 43:1237–1240

    Article  CAS  PubMed  Google Scholar 

  77. Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S (2011) Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in Matn1, Mtnr1b, Tph1, and Igf1 in a Japanese population. J Orthop Res 29:1055–1058

    Article  CAS  PubMed  Google Scholar 

  78. Tang NL, Yeung HY, Lee KM, Hung VW, Cheung CS, Ng BK, Kwok R, Guo X, Qin L, Cheng JC (2006) A relook into the association of the estrogen receptor [alpha] gene (PvuII, XbaI) and adolescent idiopathic scoliosis: a study of 540 Chinese cases. Spine 31:2463–2468

    Article  PubMed  Google Scholar 

  79. The International HapMap Consortium (2003) The international HapMap project. Nature 426:789–796

    Article  Google Scholar 

  80. Thiele H, Sakano M, Kitagawa H, Sugahara K, Rajab A, Hohne W, Ritter H, Leschik G, Nurnberg P, Mundlos S (2004) Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc Natl Acad Sci U S A 101:10155–10160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  82. Wang H, Wu Z, Zhuang Q, Fei Q, Zhang J, Liu Y, Wang Y, Ding Y, Qiu G (2008) Association study of tryptophan hydroxylase 1 and arylalkylamine n-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine (Phila Pa 1976) 33:2199–2203

    Article  Google Scholar 

  83. Weeks DE, Lange K (1988) The affected-pedigree-member method of linkage analysis. Am J Hum Genet 42:315–326

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Weinstein SL (1999) Natural history. Spine (Phila Pa 1976) 24:2592–2600

    Article  CAS  Google Scholar 

  85. Whittemore AS, Halpern J (1994) A class of tests for linkage using affected pedigree members. Biometrics 50:118–127

    Article  CAS  PubMed  Google Scholar 

  86. Whittock NV, Sparrow DB, Wouters MA, Sillence D, Ellard S, Dunwoodie SL, Turnpenny PD (2004) Mutated Mesp2 causes spondylocostal dysostosis in humans. Am J Hum Genet 74:1249–1254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Winter RB (1988) Congenital scoliosis. Orthop Clin North Am 19:395–408

    CAS  PubMed  Google Scholar 

  88. Wise CA, Barnes R, Gillum J, Herring JA, Bowcock AM, Lovett M (2000) Localization of susceptibility to familial idiopathic scoliosis. Spine 15(25):2372–2380

    Article  Google Scholar 

  89. Wu J, Qiu Y, Zhang L, Sun Q, Qiu X, He Y (2006) Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine 31:1131–1136

    Article  PubMed  Google Scholar 

  90. Wynne-Davies R (1969) Familial idiopathic scoliosis: a family survey. J Bone Joint Surg 50B:24–30

    Google Scholar 

  91. Wynne-Davies R (1975) Congenital vertebral anomalies: aetiology and relationship to spina bifida cystica. J Med Genet 12:280–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Yeung HY, Tang NL, Lee KM, Ng BK, Hung VW, Kwok R, Guo X, Qin L, Cheng JC (2006) Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud Health Technol Inform 123:18–24

    CAS  PubMed  Google Scholar 

  93. Zhang HQ, Lu SJ, Tang MX, Chen LQ, Liu SH, Guo CF, Wang XY, Chen J, Xie L (2009) Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 34:760–764

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. C. Cheung MD, FRCS, FHKCOS, FHKAM(ORTH) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheung, K.M.C., To, M., Ho, D.W.H., Song, YQ. (2016). Genetics. In: Akbarnia, B., Yazici, M., Thompson, G. (eds) The Growing Spine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48284-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48284-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48283-4

  • Online ISBN: 978-3-662-48284-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics