Skip to main content

Modeling and Simulation of Filtration Processes

  • Chapter
Currents in Industrial Mathematics

Abstract

Finding advanced filtration and separation solutions is often critical for the development of highly efficient and reliable products and tools, as well as for ensuring a high quality of life. In fact, it is difficult to find an industry where filters do not play an important role. A car, for example, contains filters for transmission fluid, fuel, engine air, cabin air, coolant, and brake fluid. Furthermore, the quality of our drinking water, the treatment of wastewater, and the air we breathe all depend critically on filtration solutions. The filtration and purification business is expanding greatly, with scores of large companies and thousands of SMEs competing fiercely to develop better filters. Industrial demand for innovative filtration solutions is growing rapidly, along with a more intensive usage of Computer Aided Engineering (CAE) in filter design processes. Comprehensive mathematical studies need to be carried out to provide engineers with proper CAE tools and approaches. The solid-liquid and solid-gas separation processes discussed in this chapter are intrinsically multiscale, multiphysics processes. Dust particle and pore size in filter media may vary from the sub-micron scale to hundreds of microns, while a filter element may range from several centimeters to several meters in size. Depending on the operating conditions and the material properties, the filter media may behave as a rigid body or be deformable. This chapter provides an overview of the industrial and mathematical challenges in modeling and simulating filtration processes, along with a summary of the basic achievements of the Fraunhofer ITWM in this area. Approaches for the microscale (pore scale) and macroscale (filter element scale) investigation of filtration processes are discussed in detail, along with a recently developed method for treating the coupled multiscale filtration problem. Software tools developed in the last decade are described. Finally, some success stories are presented to illustrate the potential of industrial mathematics for solving practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    IBS-Filtran GmbH, Morsbach, Germany, www.ibs-filtran.com.

  2. 2.

    ARGO-HYTOS GmbH, Kraichtal-Menzingen, Germany, www.argo-hytos.com.

References

Publications of the Topic at the Fraunhofer ITWM

  1. Andrä, H., Iliev, O., Kabel, M., Lakdawala, Z., Kirsch, R., Starikovičius, V.: Modelling and simulation of filter media loading and of pleats deflection. In: Proceedings FILTECH Conference 2011, vol. I, pp. 480–486 (2011)

    Google Scholar 

  2. Beier, H., Vogel, C., Haase, J., Hunger, M., Schmalz, E., Sauer-Kunze, M., Bergmann, L., Lieberenz, K., Fuchs, H., Frijlink, J.J., Schmidt, G., Wiesmann, A., Durst, M., Best, W., Burmeister, A., Wiegmann, A., Latz, A., Rief, S., Steiner, K.: Vliesstoffe für technische anwendungen. In: Fuchs, H., Albrecht, W. (eds.) Vliesstoffe: Rohstoffe, Herstellung, Anwendung, Eigenschaften, Prüfung, pp. 539–637. Wiley-VCH, Weinheim (2012)

    Chapter  Google Scholar 

  3. Bernards, D., Dedering, M., Kabel, M., Kirsch, R., Staub, S.: Experimental study and numerical simulation of the flow-induced deformation of filtering media in automotive transmission filters. In: Proceedings Filtech 2015 Conference (2015). L15-02-P076

    Google Scholar 

  4. Calo, V., Nicolò, E., Iliev, O., Lakdawala, Z., Leonard, K., Printsypar, G.: Simulation of osmotic and reactive effects in membranes with resolved microstructure. In: Proceedings Filtech 2015 Conference (2015). M07-03-P101

    Google Scholar 

  5. Ciegis, R., Iliev, O., Lakdawala, Z.: On parallel numerical algorithms for simulating industrial filtration problems. Comput. Methods Appl. Math. 7(2), 118–134 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Dedering, M., Stausberg, W., Iliev, O., Lakdawala, Z., Ciegis, R., Starikovičius, V.: On new challenges for CFD simulation in filtration. In: Proceedings of the 10th World Filtration Congress (2008)

    Google Scholar 

  7. Ginzburg, I., Klein, P., Lojewski, C., Reinel-Bitzer, D., Steiner, K.: Parallele Partikelcodes für industrielle Anwendungen (2001)

    Google Scholar 

  8. Iliev, D., Iliev, O., Kirsch, R., Dedering, M., Mikelić, A.: Modelling and simulation of fluid-porous structure interaction (FPSI) on the filter element scale. In: Proceedings Filtech 2013 Conference (2013). G16-03-138

    Google Scholar 

  9. Iliev, D., Iliev, O., Kirsch, R., Mikelic, A., Printsypar, G., Calo, V.: Efficient simulations of poroelastic deformations in pleated filters. In: Proceedings Filtech 2015 Conference (2015). F05-01-P097

    Google Scholar 

  10. Iliev, O., Kirsch, R., Lakdawala, Z.: On some macroscopic models for depth filtration: analytical solutions and parameter identification. In: Proceedings Filtech Conference 2011 (2011)

    Google Scholar 

  11. Iliev, O., Kirsch, R., Lakdawala, Z., Starikovičius, V.: Numerical simulation of non-Darcy flow using filter element simulation toolbox (FiltEST). In: Proceedings Filtech 2013 Conference (2013). G18-02-148

    Google Scholar 

  12. Iliev, O., Kirsch, R., Osterroth, S.: Cake filtration simulation for poly-dispersed spherical particles. In: Proceedings Filtech 2015 Conference (2015). L10-03-P112

    Google Scholar 

  13. Iliev, O., Lakdawala, Z., Andrä, H., Kabel, M., Steiner, K., Starikovičius, V.: Interaction of fluid with porous structure in filteration processes: modelling and simulation of pleats deflection. In: Proc. Filtech Europa, vol. 2, pp. 27–31 (2009)

    Google Scholar 

  14. Iliev, O., Lakdawala, Z., Kirsch, R., Steiner, K., Toroshchin, E., Dedering, M., Starikovičius, V.: CFD simulations for better filter element design. In: Proceedings Filtech Conference 2011. Filtech Congress 2011 (2011)

    Google Scholar 

  15. Iliev, O., Lakdawala, Z., Printsypar, G.: On a multiscale approach for filter efficiency simulations. Comput. Math. Appl. 67(12), 2171–2184 (2014)

    Article  MathSciNet  Google Scholar 

  16. Iliev, O., Lakdawala, Z., Starikovičius, V.: On a numerical subgrid upscaling algorithm for Stokes–Brinkman equations. Comput. Math. Appl. 65(3), 435–448 (2013)

    Article  MathSciNet  Google Scholar 

  17. Iliev, O., Laptev, V.: On numerical simulation of flow trough oil filters. Comput. Vis. Sci. 6, 139–146 (2004)

    Article  MATH  Google Scholar 

  18. Iliev, O., Lazarov, R., Willems, J.: Variational multiscale finite element method for flows in highly porous media. Multiscale Model. Simul. 9(4), 1350–1372 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Iliev, O., Printsypar, G., Rief, S.: A two-dimensional model of the pressing section of a paper machine including dynamic capillary effects. J. Eng. Math. 01/2013, 81–107 (2013)

    Article  Google Scholar 

  20. Iliev, O., Rybak, I.: On numerical upscaling for flows in heterogeneous porous media. Comput. Methods Appl. Math. 8, 60–76 (2008)

    MATH  MathSciNet  Google Scholar 

  21. Iliev, O., Schindelin, A., Wiegmann, A.: Computer aided development of hydraulic filter elements—from theory to patent and products. In: Berns, K., Schnindler, C., Dreßler, K., Jörg, B., Kalmar, R., Hirth, J. (eds.) Proceedings of the 1st Commercial Vehicle Technology (CVT 2010). Commercial Vehicle Technology 2010, pp. 68–75 (2010)

    Google Scholar 

  22. Kabel, M., Andrä, H., Hahn, F., Lehmann, M.: Simulating the compression of filter materials. In: Proceedings Filtech 2013 Conference (2013). G16-01-057

    Google Scholar 

  23. Latz, A.: Partikel- und Wärmetransport durch Strömung in Mikrostrukturen. Tech. Rep. 2. Report, Stiftung Rheinland-Pfalz für Innovation (2003)

    Google Scholar 

  24. Latz, A., Rief, S., Wiegmann, A.: Research note: computer simulation of air filtration including electric surface charges in 3-dimensional fibrous microstructures. Filtration 6(2), 169–172 (2006)

    Google Scholar 

  25. Latz, A., Wiegmann, A.: Filtermaterialdesign per software. Laboratory IT User Service 1/04 (2004)

    Google Scholar 

  26. Ohser, J., Schladitz, K.: 3d images of material structures—processing and analysis. Imaging Microsc. 11(4), 21 (2009)

    Article  Google Scholar 

  27. Prill, T., Schladitz, K., Jeulin, D., Wieser, C.: Morphological segmentation of FIB-SEM data of highly porous media. J. Microsc. 250(2), 77–87 (2013)

    Article  Google Scholar 

  28. Probst-Schendzielorz, S., Rief, S., Wiegmann, A., Andrä, H., Schmitt, M.: Simulation of press dewatering. In: Progress in Paper Physics Seminar, pp. 301–302 (2011)

    Google Scholar 

  29. Proceedings of 2nd Annual meeting of Bulgarian Section of SIAM: Modelling and Simulation of Multiscale Problems in Industrial Filtration Processes (2007)

    Google Scholar 

  30. Rief, S., Iliev, O., Kehrwald, D., Latz, A., Steiner, K., Wiegmann, A.: Simulation und virtuelles Design von Filtermedien und Filterelementen. In: Durst, G.M., und Klein, M. (eds.) Filtration in Fahrzeugen. Expert-Verlag, Renningen (2006)

    Google Scholar 

  31. Rief, S., Wiegmann, A., Latz, A.: Computer simulation of air filtration including electric surface charges in three-dimensional fibrous micro structures. Math. Model. Anal. 10(3), 287–304 (2005)

    MathSciNet  Google Scholar 

  32. Schmidt, K., Rief, S., Wiegmann, A.: Simulation of dpf media, soot deposition and pressure drop evolution. In: Proc. Filtech Europa, vol. 2, pp. 74–80 (2009)

    Google Scholar 

  33. Spahn, J., Andrä, H., Kabel, M., Müller, R.: A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Comput. Methods Appl. Mech. Eng. 268, 871–883 (2014). ISSN 0045-7825

    Article  MATH  Google Scholar 

  34. Starikovičius, V., Ciegis, R., Iliev, O., Lakdawala, Z.: A parallel solver for the 3d simulation of flows through oil filters. In: Parallel Scientific Computing and Optimization. Springer Optimization and Its Applications, vol. 27, pp. 181–191 (2008)

    Chapter  Google Scholar 

  35. Wiegmann, A.: GeoDict. Fraunhofer ITWM Kaiserslautern. www.geodict.com

  36. Wiegmann, A.: A Fast Fictitious Force 3D Stokes Solver. Fraunhofer ITWM Kaiserslautern (2007)

    Google Scholar 

  37. Wiegmann, A., Becker, J.: Virtual characterization of the pore structure of nonwoven. In: Proceedings of the International Nonwoven Technical Conference (2007)

    Google Scholar 

  38. Wiegmann, A., Zemitis, A.: Electrostatic Fields for Filtration Simulations in Fibrous Air Filter Media. Fraunhofer ITWM Kaiserslautern (2006)

    Google Scholar 

Dissertations on This Topic at Fraunhofer ITWM

  1. Buck, M.: Overlapping domain decomposition preconditioners for multi-phase elastic composites. Ph.D. thesis, Technical University Kaiserslautern (2013)

    Google Scholar 

  2. Kronsbein, C.: On selected efficient numerical methods for multiscale problems with stochastic coefficients. Ph.D. thesis, Technical University Kaiserslautern (2013)

    Google Scholar 

  3. Lakdawala, Z.: On efficient algorithms for filtration related multiscale problems. Ph.D. thesis, Technical University Kaiserslautern (2010)

    Google Scholar 

  4. Laptev, V.: Numerical solution of coupled flow in plain and porous media. Ph.D. thesis, Technical University Kaiserslautern (2004)

    Google Scholar 

  5. Nagapetyan, T.: Multilevel Monte Carlo method for distribution function approximation with application to asymmetric flow field flow fractionation. Ph.D. thesis, Technical University Kaiserslautern (2014)

    Google Scholar 

  6. Naumovich, A.: Efficient numerical methods for the Biot poroelasticity system in multilayered domains. Ph.D. thesis, Technical University Kaiserslautern (2007)

    Google Scholar 

  7. Niedziela, D.: On numerical simulations of viscoelastic fluids. Ph.D. thesis, Technical University Kaiserslautern (2006)

    Google Scholar 

  8. Printsypar, G.: Mathematical modeling and simulation of two-phase flow in porous media with application to the pressing section of a paper machine. Ph.D. thesis, Technical University Kaiserslautern (2012)

    Google Scholar 

  9. Rief, S.: Nonlinear flow in porous media—numerical solution of the Navier–Stokes system with two pressures and application to paper making. Ph.D. thesis, Technical University Kaiserslautern (2005)

    Google Scholar 

  10. Schmidt, K.: Dreidimensionale Modellierung von Filtermedien und Simulation der Partikelabscheidung auf der Mikroskala. Ph.D. thesis, Technical University Kaiserslautern (2011)

    Google Scholar 

  11. Schmidt, S.: On numerical simulation of granular flow. Ph.D. thesis, Technical University Kaiserslautern (2009)

    Google Scholar 

  12. Strautins, U.: Flow-driven orientation dynamics in two classes of fibre suspensions. Ph.D. thesis, Technical University Kaiserslautern (2008)

    Google Scholar 

  13. Willems, J.: Numerical upscaling for multiscale flow problems. Ph.D. thesis, Technical University Kaiserslautern (2009)

    Google Scholar 

  14. Zemerli, C.: Continuum mechanical modelling of granular systems. Ph.D. thesis, Technical University Kaiserslautern (2013)

    Google Scholar 

Further Literature

  1. Abboud, N.M., Corapcioglu, M.Y.: Numerical solution and sensitivity analysis of filter cake permeability and resistance to model parameters. Transp. Porous Media 10(3), 235–255 (1993)

    Article  Google Scholar 

  2. Angot, P.: A fictitious domain model for the Stokes–Brinkman problem with jump embedded boundary conditions. C. R. Math. 348(11–12), 697–702 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arbogast, T., Bryant, S.: A two-scale numerical subgrid technique for waterflood simulations. SPE J. 7(4), 446–457 (2002)

    Article  Google Scholar 

  4. Balhoff, M., Mikelić, A., Wheeler, M.: Polynomial filtration laws for low Reynolds number flows through porous media. Transp. Porous Media 81(1), 35–60 (2010)

    Article  MathSciNet  Google Scholar 

  5. Barree, R., Conway, M.: Beyond beta factors: a complete model for Darcy, Forchheimer and trans-Forchheimer flow in porous media. In: 2004 Annual Technical Conference and Exhibition, Paper SPE 89325 (2004)

    Google Scholar 

  6. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1990)

    Book  Google Scholar 

  7. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  8. Biot, M.: General theory of threedimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  MATH  Google Scholar 

  9. Biot, M.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1949)

    Article  MATH  Google Scholar 

  11. Brown, R., Wake, D.: Loading filters with monodisperse aerosols: macroscopic treatment. J. Aerosol Sci. 30(2), 227–234 (1999)

    Article  Google Scholar 

  12. Chen, M., Durlofsky, L., Gerristen, M., Wen, X.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26(10), 1041–1060 (2003)

    Article  Google Scholar 

  13. Chorin, A.: Numerical solution of Navier–Stokes equation. In: Mathematics of Computation, vol. 22, pp. 745–760 (1968)

    Google Scholar 

  14. Darcy, H.: Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris (1856)

    Google Scholar 

  15. Dedering, M.: Filter medium for an oil filter. Patent DE102008027663 (2009)

    Google Scholar 

  16. Efendiev, Y., Hou, T.: Multiscale Finite Element Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  17. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89 (1952)

    Google Scholar 

  18. Espedal, M., Fasano, A., Mikelić, A.: Filtration in Porous Media and Industrial Application. Springer, Berlin (1998)

    Google Scholar 

  19. Ferziger Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  20. Fletcher, C.: Computational Techniques for Fluid Dynamics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  21. Forchheimer, P.: Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45, 1782 (1901)

    Google Scholar 

  22. Gresho, P., Sani, R.: Incompressible Flow and the Finite Element Method. Advection–Diffusion and Isothermal Laminar Flow, vol. 1. Wiley, Chichester (1998). In collaboration with M.S. Engelman

    MATH  Google Scholar 

  23. Griebel, M., Klitz, M.: Homogenisation and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8(4), 1439–1460 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hornung, U.: Homogenization and Porous Media. Springer, New York (1996)

    Google Scholar 

  25. Ives, K.: Rapid filtration. Water Res. 4, 201–223 (1970)

    Article  Google Scholar 

  26. Iwasaki, T.: Some notes on sand filtration. J. Am. Wat. Wks. Ass. 29(10), 1591–1602 (1937)

    Google Scholar 

  27. Jackson, G.W., James, D.F.: The permeability of fibrous porous media. Can. J. Chem. Eng. 64(3), 364–374 (1986)

    Article  Google Scholar 

  28. Jäger, W., Mikelić, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 23(3), 403–465 (1996)

    MATH  Google Scholar 

  29. Jenny, P., Lunati, I.: Multi-scale finite-volume method for elliptic problems with heterogeneous coefficients and source terms. PAMM 6(1), 485–486 (2006)

    Article  MathSciNet  Google Scholar 

  30. Johnson, R.W. (ed.): The Handbook of Fluid Dynamics. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  31. Kaviany, M.: Principles of Heat Transfer in Porous Media. Mechanical Engineering Series. Springer, Berlin (1995)

    Book  Google Scholar 

  32. Marciniak-Czochra, A., Mikelić, A.: A rigorous derivation of the equations for the clamped Biot-Kirchhoff-Love poroelastic plate. Arch. Ration. Mech. Anal. 215(3), 1035–1062 (2015). doi:10.1007/s00205-014-0805-2

    Article  MATH  MathSciNet  Google Scholar 

  33. Mints, D.M.: Kinetics of the filtration of low concentration water suspensions. Dokl. Akad. Nauk SSSR 78(2), 315–318 (1951)

    MathSciNet  Google Scholar 

  34. Morris, J.: An Overview of the Method of Smoothed Particle Hydrodynamics (1995)

    Google Scholar 

  35. Ochoa-Tapia, J., Whitaker, S.: Momentum-transfer at the boundary between a porous-medium and a homogeneous fluid. Int. J. Heat Mass Transf. 38, 2635–2655 (1995)

    Article  MATH  Google Scholar 

  36. Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science. Wiley, New York (2000)

    MATH  Google Scholar 

  37. Olivier, J., Vaxelaire, J., Vorobiev, E.: Modelling of cake filtration: an overview. Sep. Sci. Technol. 42(8), 1667–1700 (2007)

    Article  Google Scholar 

  38. Podgórski, A.: Macroscopic model of two-stage aerosol filtration in a fibrous filter without reemission of deposits. J. Aerosol Sci. 29, S929–S930 (1998)

    Article  Google Scholar 

  39. Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983)

    Article  MATH  Google Scholar 

  40. Saleh, A., Hosseini, S., Tafreshi, H.V., Pourdeyhimi, B.: 3-d microscale simulation of dust-loading in thin flat-sheet filters: a comparison with 1-d macroscale simulations. Chem. Eng. Sci. 99, 284–291 (2013)

    Article  Google Scholar 

  41. Schindelin, A., Schadt, W.: Gewelltes oder gefaltetes Flachmaterial. Patent DE102007040892 A1 (2009)

    Google Scholar 

  42. Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier–Stokes equation. J. Comput. Appl. Math. 128, 261–279 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Taber, L.A.: A theory for transversal deflection of poroelastic plates. J. Appl. Mech. 59, 628–634 (1992)

    Article  MATH  Google Scholar 

  44. Tien, C.: Introduction to Cake Filtration: Analyses, Experiments and Applications. Elsevier, Amsterdam (2006)

    Google Scholar 

  45. Tien, C., Payatakes, A.C.: Advances in deep bed filtration. AIChE J. 25(5), 737–759 (1979)

    Article  Google Scholar 

  46. Turek, S.: Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering, vol. 6. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  47. Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Upper Saddle River (2007)

    Google Scholar 

  48. Ward, J.: Turbulent flow in porous media. J. Hyd. Div. ASCE 90, 1–12 (1964)

    Google Scholar 

  49. Weinan, E., Engquist, B.: The heterognous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  50. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Iliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iliev, O., Kirsch, R., Lakdawala, Z., Rief, S., Steiner, K. (2015). Modeling and Simulation of Filtration Processes. In: Neunzert, H., Prätzel-Wolters, D. (eds) Currents in Industrial Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48258-2_7

Download citation

Publish with us

Policies and ethics