An Efficient Local-Recoding k-Anonymization Algorithm Based on Clusterin

  • Lifeng YuEmail author
  • Qiong Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8971)


KACA is a typical local-recoding k-anonymization algorithm. It can generate k-anonymizing data with high quality. The main drawback of KACA algorithm is its high computational cost in dealing with large dataset. To remedy this problem, we propose an new efficient k-anonymization algorithm. The main idea of the proposed algorithm is that we first adopt the c-modes algorithm to partition the whole dataset into some large clusters, and then take KACA algorithm to k-anonymize each cluster separately. Finally, comprehensive experiments demonstrate the effectiveness of our algorithm.


K-anonymity KACA algorithm C-modes algorithm Information loss 



This paper is supported by the major science and technology projects of Shaoxing city (2010A21034).


  1. 1.
    Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: Proceedings of the 17th ACM-SIGMOD, p. 188 (1998)Google Scholar
  2. 2.
    LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: Proceedings of the SIGMOD 2005, pp. 49–60 (2005)Google Scholar
  3. 3.
    Li, J., Wong, R.C.-W., Fu, A.W.-C., Pei, J.: Achieving k-anonymity by clustering in attribute hierarchical structures. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 405–416. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Aggarwal, G., Feder, T., Kenthapadi, K. et al.: Achieving anonymity via clustering. In: Proceedings of the 25th ACM SIGMOD, pp. 153–162 (2006)Google Scholar
  5. 5.
    Zhu, H., Ye, X.: Achieving k-anonymity via a density-based clustering method. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505, pp. 745–752. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Byun, J.-W., Kamra, A., Bertino, E., Li, N.: Efficient k-anonymization using clustering techniques. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 188–200. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Xu, J., Wang, W., Pei, J., et al.: Utility-based anonymization for privacy preservation with less information loss. ACM SIGKDD Explor. Newslett. 8(2), 21–30 (2006)CrossRefGoogle Scholar
  8. 8.
    Grigorios, L., Shao, J.: An efficient clustering algorithm for k-anonymisation. J. Comput. Sci. Technol. 23(2), 188–202 (2008)CrossRefGoogle Scholar
  9. 9.
    Tapas, K., David, M., Mount, M., et al.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)CrossRefGoogle Scholar
  10. 10.
    Chiu, C.-C., Tsai, C.-Y.: A k-anonymity clustering method for effective data privacy preservation. In: Alhajj, R., Gao, H., Li, X., Li, J., Zaïane, O.R. (eds.) ADMA 2007. LNCS (LNAI), vol. 4632, pp. 89–99. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 2(3), 283–304 (1998)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Pang, J.: Protecting query privacy in location-based services. Geoinformatica 18, 1–39 (2013)Google Scholar
  13. 13.
    Damiani, M.L.: Location privacy models in mobile applications: conceptual view and research directions. Geoinformatica 18, 1–24 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Computer BranchZhejiang Industry Polytechnic CollegeShaoxingChina

Personalised recommendations