3D Objects Feature Extraction and Its Applications: A Survey

  • Haisheng LiEmail author
  • Xuan Liu
  • Qiang Cai
  • Junping Du
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8971)


As large public repositories of 3D objects continue to grow, more and more feature extraction technologies for 3D objects spring up. On the basis of classical algorithm, new factors have been added to these emerging technologies. Feature extraction technologies, which are based on shape structure and geometry information, include semantics, kinematics and cognition, etc. While the technologies have been developing, using features to solve problem is more important than just extracting features from 3D objects. In this paper, we summarize several feature extraction technologies from different aspects. Then we aim at the applications of 3D object feature, not just the general 3D models retrieval, mainly about some specific applications and target on 3D CAD objects, non-rigid 3D objects and deformable objects.


Feature extraction Curve-skeleton Deformation 



This work was supported in part by National Basic Research Program of China (973 Program) 2012CB821200 (2012CB821206), and the open funding project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (Grant No. BUAA-VR-14KF-04).


  1. Au, O., Tai, C., Chu, H., Cohen–Or, D., Lee, T.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27(3), 44:1–44:10 (2008)CrossRefGoogle Scholar
  2. Bai, J., Gao, S.M., Tang, W.H., Liu, Y.S., Guo, S.: Design reuse oriented partial retrieval of CAD models. Comput. Aided Des. 42, 1069–1084 (2010)CrossRefGoogle Scholar
  3. Bai, J., Liu, Y.S., Gao, S.M.: Multiresolutional retrieval of solid models based on local dilation. J. Comput. Aided Des. Comput. Graph. 19(4), 480–485 (2007). (in Chinese)MathSciNetGoogle Scholar
  4. Baloch, S., Krim, H.: Object recognition through topo-geometric shape models using error-tolerant subgraph isomorphisms. IEEE Trans. Image Process. 19(5), 1191–1200 (2010)MathSciNetCrossRefGoogle Scholar
  5. Blum, H.: A transformation for Extracting New Descriptors of shape, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  6. Blum, H.: Biological shape and visual science: part I. J. Theor. Biol. 1973(38), 205–287 (1973)CrossRefGoogle Scholar
  7. Cao, T.Y., Yang, J.B., Zhang, W.X.: Potential balance-based image skeleton extraction algorithm 2003. J. SE Univ. (Nat. Sci. Ed.) 33(6), 724–727 (2003)Google Scholar
  8. Chaouch, M., Verroust-Blondet, A.: 3D gaussian descriptor for 3D shape retrieval. multimedia and Expo, 2009. ICME 2009, 834–837 (2009)Google Scholar
  9. Chaudhuri, S., Koltun, V.: Data-Driven suggestions for creativity support in 3D modeling. ACM Trans. Graph. 29(6), 183:1–183:9 (2010)CrossRefGoogle Scholar
  10. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3d model retrieval. Compuet. Graph. Fourm 22(3), 223–232 (2003)CrossRefGoogle Scholar
  11. Chen, X., Gao, S.M., Guo, S., Bai, J.: A flexible assembly retrieval approach for model reuse. Comput. Aided Des. 44, 554–574 (2012)CrossRefGoogle Scholar
  12. Chen, X.F., Wang, R.S.: A multi-scale skeletonization algorithm based on non-ridge points lowering operation. J. Softw. 14(5), 925–929 (2003). (in Chinese)zbMATHGoogle Scholar
  13. Cornea, N.D., Silver, D., Min, P.: Curve-Skeleton properties, applications, and algorithms. IEEE Transactiond Vis. Comput. Graph. 13(3), 530–548 (2007)CrossRefGoogle Scholar
  14. Cui, C.Y., Shi, J.Y.: Analysis of feature extraction in 3D model retrieval. J. Comput. Aided Des. Comput. Graph. 16(7), 882–889 (2004). (in Chinese)Google Scholar
  15. Daras, P., Axenopoulos, A.: A compact multi-view descriptor for 3D object retrieval. In: Seventh International Workshop on Content-Based Multimedia Indexing, pp. 115–119 (2009)Google Scholar
  16. Pickup, D., Sun, X., Rosin, P.L., et al.: SHREC 2014 track: shape retrieval of non-rigid 3D human models. In: Proceedings of the 7th Eurographics workshop on 3D Object Retrieval. Eurographics Association, 2014, 10 (2014)Google Scholar
  17. de Goes, F., Goldenstein, S., Desbrun, M., Velho, L.: Exoskeleton: curve network abstraction for 3D shapes. Comput. Graph. 35, 112–121 (2011)CrossRefGoogle Scholar
  18. Ding, Y., Liu, W.Y., Zheng, Y.H.: Hierarchical connected skeletonization algorithm based on distance transform. J. Infrared Millim. Waves 24(4), 281–285 (2005). (in Chinese)Google Scholar
  19. Fang, Y., Sun, M.T., Ramani, K.: Temperature distribution descriptor for robust 3D shape retrieval. In: 2011 IEEE Computer Society Conference Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 9–16 (2011)Google Scholar
  20. Gao, W., Gao, S.M., Liu, Y.S.: 3D CAD model similarity assessment and retrieval using DBS. In: Proceeding of ASME DETC 2005 Computers and Information in Engineering(CIE) Conferenee (2005)Google Scholar
  21. Gao, Y., Tang, J.H., Hong, R.C., Yan, S.C., Dai, Q.H.: Camera constraint-free view-based 3-D object retrieval. IEEE Trans. Image Process. 21(4), 2269–2281 (2012)MathSciNetCrossRefGoogle Scholar
  22. Gao, Y., Tang, J.H., Li, H.J., Dai, Q.H., Zhang, N.Y.: View-based 3D model retrieval with probabilistic graph model. Neurocomputing 73, 1900–1905 (2010)CrossRefGoogle Scholar
  23. Jain, A., Thormählen, T., Ritschel, T., Seidel, H.: Exploring shape variations by 3D-model decomposition and part-based recombination. In: Paper presented at the EUROGRAPHICS 2012 (2011)Google Scholar
  24. Kalogerakis, E., Chaudhuri, S., Koller, D., Koltun, V.: A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31(4), 55:1–55:11 (2012)CrossRefGoogle Scholar
  25. Lavoué, G.: Bag of words and local spectral descriptor for 3D partial shape retrieval. In: Eurographics Workshop on 3D Object Retrieval (3DOR 2011), pp. 41–48 (2011)Google Scholar
  26. Lee, C., Shih, J., Yu, K., Chang, H.: Projection of shape features for 3D model retrieval. In: International Conference of the Multimedia Technology (ICMT), pp. 634–637 (2011)Google Scholar
  27. Lombaert, H., Grady, L., Polimeni, J.R., et al.: FOCUSR: feature oriented correspondence using spectral regularization–a method for precise surface matching. Pattern Anal. Mach. Intell. IEEE Trans. 35(9), 2143–2160 (2013)CrossRefGoogle Scholar
  28. Li, M., Zhang, Y.F., Fuh, J.Y.H.: Retrieving reusable 3D CAD modelsretrieving reusable 3D CAD models using knowledge-driven dependency graph partitioning. Comput. Aided Des. Appl. 7(3), 417–430 (2010)Google Scholar
  29. Li, P.J., Ma, H.D., Ming, A.L.: View-based 3D model retrieval with topological structure. In: 2011 IEEE International Multimedia and Expo (ICME), pp. 1–6 (2011a)Google Scholar
  30. Li, P.J., Ma, H.D., Ming, A.L.: Non-rigid 3D model retrieval using multi-scale local features. In: MM 2011 Proceedings of the 19th ACM International Conference on Multimedia, pp. 1425–1428 (2011b)Google Scholar
  31. Lian, Z.H., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., et al.: A comparison of methods for non-rigid 3D shape retrieval. Appear Pattern Recognit. 46, 449–461 (2013)CrossRefGoogle Scholar
  32. Lin, J., Li, Z., Jin, X.G., Li, L.: Skeleton extraction method based on convex hull and OBB. J. Comput. Aided Des. Comput. Graph. 24(6), 793–798 (2012). (in Chinese)Google Scholar
  33. Liu, J.T., Liu, W.Y., Wu, C.H., et al.: A new method of extracting objects’ curve-skeleton. Acta Automatica Sinica 34(6), 617–622 (2008). (in Chinese)CrossRefGoogle Scholar
  34. Liu, Y.J., Zheng, Y.F., Lv, L., Xuan, Y.M., Fu, X.L.: 3D model retrieval based on color + geometry signatures. Vis. Comput. 28, 75–86 (2012)CrossRefGoogle Scholar
  35. Liu, Y.J., Luo, X., Joneja, A., Ma, C.X., Fu, X.L., Song, D.W.: User-adaptive Sketch-based 3D CAD model retrieval. In: To appear in IEEE Transactions on Automation Science and Engineering (2012b)Google Scholar
  36. Liu, Y.J., Zhang, X.D., Li, Z.M., Li, H.: 3D model feature extraction method based on the projection of principle plane. Comput. Aided Des. Comput. Graph. 10(11), 463–469 (2009)Google Scholar
  37. Liu, W.Y., Bai, X., Zhu, G.X.: A skeleton-growing algorithm based on boundary curve evolution. Acta Automatica Sinica 32(2), 256–262 (2006). (in Chinese)Google Scholar
  38. Lmaati, E.A., Oirrak, A.E., Aboutajdine, D., Daoudi, M., Kaddioui, M.N.: A 3-D Search engine based on Fourier series. Comput. Vis. Image Underst. 114, 1–7 (2010)CrossRefGoogle Scholar
  39. Mahmoudi, S., Benjelloun, M.: 3D objects retrieval using curvature scale space and zernike moments. J. Pattern Recogn. Res. 1, 75–95 (2011)CrossRefGoogle Scholar
  40. Osada, R., Funkhouser, T., Chazelle, B., et al.: Shape distributions. ACM Trans. Graph. 21(4):807–823 (2002)CrossRefGoogle Scholar
  41. Ovsjanikov, M., Li, W., Guibas, L., Mitra, N.J.: Exploration of continuous variability in collections of 3D shapes. ACM Trans. Graph. 30(4), 33:1–33:10 (2011)CrossRefGoogle Scholar
  42. Ohkita, Y., Furuya, T., Ohbuchi, R.: Sets of local 3D shape descriptors for 3D model retrieval. In: Proceedings of the Visual Computing Symposium (2009)Google Scholar
  43. Pan, X., You, Q., Liu, Z., Chen, Q.H.: 3D shape retrieval by Poisson histogram. Pattern Recogn. Lett. 32, 787–794 (2011)CrossRefGoogle Scholar
  44. Pang, B., Ma, H.M.: An effective way of 3D model representation in recognition system. In: International Conference on Multimedia and Signal Processing, pp. 107–111 (2011)Google Scholar
  45. Paquet, E., Rioux, M..: A content-based search engine for VRML databases management. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, California, USA, pp. 541–546 (1998)Google Scholar
  46. Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2014)CrossRefGoogle Scholar
  47. Emanuele, R., Rota, B.S., Thomas, W., et al.: Dense non-rigid shape correspondence using random forests. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4177–4184 (2014)Google Scholar
  48. Ruggeri, M.R., Patane, G., Spagnuolo, M., Saupe, D.: Spectral-Driven isometry-invariant matching of 3D shapes. Int. J. Comput. Vis. 89, 248–265 (2010)CrossRefGoogle Scholar
  49. Sfikas, K., Pratikakis, I., Theoharis, T.: 3D Object retrieval via range image queries based on SIFT descriptors on panoramic views. In: Eurographics Workshop on 3D Object Retrieval, pp. 9–15 (2012)Google Scholar
  50. Sfikas, K., Theoharis, T., Pratikakis, I.: Non-rigid 3D object retrieval using topological information guided by conformal factors. In: Eurographics Workshop on 3D Object Retrieval, pp. 25–32 (2011)Google Scholar
  51. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 249–259 (2008)CrossRefGoogle Scholar
  52. Sipiran, I., Bustos, B.: A fully hierarchical approach for finding correspondences in non-rigid shapes. In: 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, pp. 817–824 (2013)Google Scholar
  53. Stavropoulos, G., Moschonas, P., Moustakas, K.: 3-D model search and retrieval from range images using salient features. IEEE Trans. Multimedia 12(7), 692–704 (2010)CrossRefGoogle Scholar
  54. Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. 28(3), 71:1–71:9 (2009)CrossRefGoogle Scholar
  55. Tang, J., Miller, S., Singh, A., Abbeel, P.: A textured object recognition pipeline for color and depth image data. In: 2012 IEEE International Conference of the Robotics and Automation (ICRA), pp. 3467–3474 (2012)Google Scholar
  56. Tao, S.Q., Huang, Z.D., Zuo, B.Q., Peng, Y.P., Kang, W.R.: Partial retrieval of CAD models based on the gradient flows in Lie group. Pattern Recogn. 45, 1721–1738 (2012)zbMATHCrossRefGoogle Scholar
  57. Wang, F., Zhang, S.S., Bai, X.L., Wang, H.S.: 3D model retrieval based on both the topology and shape features. J. Comput. Aided Des. Comput. Graph. 20(1), 99–103 (2008a). (in Chinese)Google Scholar
  58. Wang, F., Zhang, S.S., Bai, X.L., Chen, S.Q.: Local matching of 3D CAD models based on subgraph isomorphism. J. Comput. Aided Des. Comput. Graph. 20(8), 1076–1084 (2008b). (in Chinese)Google Scholar
  59. Wang, H.S., Zhang, S.S., Bai, X.L., Zhang, K.X.: 3D CAD surface model retrieval algorithm based on distance and curvature distributions. J. Comput. Aided Des. Comput. Graph. 22(5), 762–770 (2010). (in Chinese)CrossRefGoogle Scholar
  60. Wang, X.L., Zha, H.B.: Contour canonical form an efficient intrinsic embedding approach to matching non-rigid 3D objects. In: ICMR 2012 Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, pp. 31:1–31:8 (2012)Google Scholar
  61. Xu, K., Zhang, H., Cohen-Or, D., Chen, B.Q.: Fit and diverse set evolution for inspiring 3D shape galleries. ACM Trans. Graph. 31(4), 57:1–57:10 (2012)CrossRefGoogle Scholar
  62. Xu, K., Zheng, H.L., Zhang, H., Cohen-Or, D., Liu, L.G., Xiong, Y.S.: Photo-inspired model-driven 3D object modeling. ACM Trans. Graph. 30(4), 80:1–80:10 (2011)Google Scholar
  63. Yang, Y.B., Lin, H., Zhu, Q.: Content-Based 3D model retrieval: a survey. Chin. J. Comput. 27(10), 1297–1310 (2004). (in Chinese)MathSciNetGoogle Scholar
  64. Ye, L., Liu, J., Shan, G.H., Chi, X.B.: Skeletonization of grayscale volumes for shape description. In: 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization, pp. 337–342 (2009)Google Scholar
  65. Yu, Z., Liu, J.T., Bai, X.: Research and perspective on shape matching. Acta Automatica Sinica 38(6), 889–910 (2012). (in Chinese)MathSciNetCrossRefGoogle Scholar
  66. Zhang, K.X., Zhang, S.S., Li, L.: A method of 3D CAD model retrieval based on ant colony algorithm. J. Comput. Aided Des. Comput. Graph. 23(4), 633–639 (2001). (in Chinese)Google Scholar
  67. Zhang, K.X., Zhang, S.S., Bai, X.L.: Automatic extraction of common reusable partial structures in 3D CAD models. J. Comput. Aided Des. Comput. Graph. 23(9), 1512–1519 (2011). (in Chinese)MathSciNetGoogle Scholar
  68. Zheng, B.C., Peng, W., Zhang, Y., Ye, X., Zhang, S.Y.: A survey on 3D model retrieval techniques. J. Comput. Aided Des. Comput. Graph. 16(7), 873–881 (2004). (in Chinese)Google Scholar
  69. Zhu, K.P., Wong, Y.S., Lu, W.F., Fuh, J.Y.H.: A diffusion wavelet approach for 3-D model matching. Comput. Aided Des. 41, 28–36 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Computer and Information EngineeringBeijing Technology and Business UniversityBeijingChina
  2. 2.School of Computer ScienceBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations