JSAI International Symposium on Artificial Intelligence

JSAI-isAI 2014: New Frontiers in Artificial Intelligence pp 83-98 | Cite as

Resolving Modal Anaphora in Dependent Type Semantics

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9067)

Abstract

This paper presents an analysis of modal subordination in the framework of Dependent Type Semantics, a framework of natural language semantics based on dependent type theory. Dependent types provide powerful type structures that have been applied to various discourse phenomena in natural language, yet there has been little attempt to produce an account of modality and its interaction with anaphora from the perspective of dependent type theory. We extend the framework of Dependent Type Semantics with a mechanism of handling explicit quantification over possible worlds, and show how modal anaphora and subordination can be handled within this framework.

References

  1. 1.
    Asher, N., McCready, E.: Were, would, might and a compositional account of counterfactuals. J. Semant. 24(2), 93–129 (2007)CrossRefGoogle Scholar
  2. 2.
    Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev, S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 14–29. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Bekki, D., McCready, E.: CI via DTS. In: Proceedings of the 11th International Workshop on Logic and Engineering of Natural Language Semantics (LENLS11), Kanagawa, Japan, pp. 110–123 (2014)Google Scholar
  4. 4.
    Carlson, G.N., Spejewski, B.: Generic passages. Nat. Lang. Semant. 5(2), 101–165 (1997)CrossRefGoogle Scholar
  5. 5.
    Chatzikyriakidis, S., Luo, Z.: Natural Language Reasoning Using Proof-assistant Technology : Rich Typing and Beyond. In: Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language Semantics (TTNLS), Gothenburg, Sweden, pp. 37–45 (2014)Google Scholar
  6. 6.
    Clark, H.H.: Bridging. In: Schank, R.C., Nash-Webber, B.L. (eds.) Theoretical Issues In Natural Language Processing, pp. 169–174. Association for Computing Machinery, New York (1975)Google Scholar
  7. 7.
    Frank, A., Kamp, H.: On Context Dependence in Modal Constructions. In: Proceedings of SALT (1997)Google Scholar
  8. 8.
    Geurts, B.: Presuppositions and Pronouns. Elsevier, Oxford (1999)Google Scholar
  9. 9.
    Kratzer, A.: Modals and Conditionals: New and Revised Perspectives. Oxford University Press, Oxford (2012)CrossRefGoogle Scholar
  10. 10.
    Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Naples (1984)MATHGoogle Scholar
  11. 11.
    Muskens, R.: An analytic tableau system for natural logic. In: Aloni, M., Bastiaanse, H., de Jager, T., Schulz, K. (eds.) Logic, Language and Meaning. LNCS, vol. 6042, pp. 104–113. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  12. 12.
    Ranta, A.: Type-theoretical Grammar. Oxford University Press, Oxford (1994)MATHGoogle Scholar
  13. 13.
    Roberts, C.: Modal subordination and pronominal anaphora in discourse. Linguist. Philos. 12, 683–721 (1989)CrossRefGoogle Scholar
  14. 14.
    Roberts, C.: Anaphora in intensional contexts. In: Lappin, S. (ed.) The Handbook of Contemporary Semantic Theory, pp. 215–246. Blackwell, Oxford (1996)Google Scholar
  15. 15.
    van Rooij, R.: A modal analysis of presupposition and modal subordination. J. Semant. 22(3), 281–305 (2005)CrossRefGoogle Scholar
  16. 16.
    Steedman, M.: The Syntactic Process. MIT Press/Bradford Books, Cambridge (2000)Google Scholar
  17. 17.
    Sundholm, G.: Proof Theory and Meaning. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. Synthese Library, vol. 166, pp. 471–506. Springer, Netherlands (1986)CrossRefGoogle Scholar
  18. 18.
    Tanaka, R., Mineshima, K., Bekki, D.: Resolving modal anaphora in Dependent Type Semantics. In: Proceedings of the 11th International Workshop on Logic and Engineering of Natural Language Semantics (LENLS11), Kanagawa, Japan, pp. 43–56 (2014)Google Scholar
  19. 19.
    Veltman, F.: Defaults in update semantics. J. Philos. Logic 25, 221–261 (1996)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ribeka Tanaka
    • 1
  • Koji Mineshima
    • 1
    • 3
  • Daisuke Bekki
    • 1
    • 2
    • 3
  1. 1.Ochanomizu UniversityTokyoJapan
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.CREST, Japan Science and Technology AgencyTokyoJapan

Personalised recommendations