Advertisement

VMPlaceS: A Generic Tool to Investigate and Compare VM Placement Algorithms

  • Adrien Lebre
  • Jonathan Pastor
  • Mario Südholt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9233)

Abstract

Advanced Virtual Machines placement policies are evaluated either using limited scale in-vivo experiments or ad hoc simulator techniques. These validation methodologies are unsatisfactory. First they do not model precisely enough real production platforms (size, workload representativeness, etc.). Second, they do not enable the fair comparison of different approaches.

To resolve these issues, we propose VMPlaceS, a dedicated simulation framework to perform in-depth investigations and fair comparisons of VM placement algorithms. Built on top of SimGrid, our framework provides programming support to ease the implementation of placement algorithms and runtime support dedicated to load injection and execution trace analysis. It supports a large set of parameters enabling researchers to design simulations representative of a large space of real-world scenarios. We also report on a comparison using VMPlaceS of three classes of placement algorithms: centralized, hierarchical and fully-distributed ones.

Keywords

Cloud Computing Virtual Machine Service Node Placement Algorithm Event Queue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barker, A., et al.: Academic cloud computing research. In: 6th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 2014), June 2014Google Scholar
  2. 2.
    Birke, R., et al.: Multi-resource characterization and their (in)dependencies in production datacenters. In: IEEE NOMS 2014, May 2014Google Scholar
  3. 3.
    Bloomfield, V.A.: Using R for Numerical Analysis in Science and Engineering. Chapman and Hall/CRC, Newyork (2014)zbMATHGoogle Scholar
  4. 4.
    Calheiros, R.N., et al.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Experience 41(1), 23–50 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cartlidge, J., Cliff, D.: Comparison of cloud middleware protocols and subscription network topologies using CReST. In: CLOSER 2013, May 2013Google Scholar
  6. 6.
    Casanova, H., et al.: Versatile, scalable, and accurate simulation of distributed applications and platforms. Parallel Distrib. Comput. 74(10), 2899–2917 (2014)CrossRefGoogle Scholar
  7. 7.
    CloudStack, Open Source Cloud Computing. http://cloudstack.apache.org
  8. 8.
    Feller, E., et al.: Snooze: a scalable and autonomic virtual machine management framework for private clouds. In: IEEE CCGRID 2012, May 2012Google Scholar
  9. 9.
    Hermenier, F., Demassey, S., Lorca, X.: Bin repacking scheduling in virtualized datacenters. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 27–41. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Hermenier, F., et al.: Entropy: a consolidation manager for clusters. In: VEE 2009: Virtual Execution Environments. ACM, New York (2009)Google Scholar
  11. 11.
    Hirofuchi, T., Lebre, A., Pouilloux, L.: Adding a live migration model into simgrid: one more step toward the simulation of infrastructure-as-a-service concerns. In: CloudCom 2013: Cloud Computing Technology and Science. IEEE (2013)Google Scholar
  12. 12.
    Iosup, A., Sonmez, O.O., Epema, D.H.J.: DGSim: comparing grid resource management architectures through trace-based simulation. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 13–25. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Kliazovich, D., et al.: Greencloud: a packet-level simulator of energy-aware cloud computing data centers. In: IEEE GlobeCom 2010, December 2010Google Scholar
  14. 14.
    Moreno-Vozmediano, R., et al.: IaaS cloud architecture: from virtualized datacenters to federated cloud infrastructures. Comput. J. 45(12), 65–72 (2012)CrossRefGoogle Scholar
  15. 15.
    Nunez, A., Vazquez-Poletti, J.L., et al.: iCanCloud: a flexible and scalable cloud infrastructure simulator. J. Grid Comput. 10(1), 185–209 (2012)CrossRefGoogle Scholar
  16. 16.
    Open Source Data Center Virtualization. http://www.opennebula.org
  17. 17.
    The Open Source, Open Standards Cloud. http://www.openstack.org
  18. 18.
    PajeNG - Trace Visualization Tool. https://github.com/schnorr/pajeng
  19. 19.
    Quesnel, F., Lebre, A., Südholt, M.: Cooperative and reactive scheduling in large-scale virtualized platforms with DVMS. Concurrency Comput. Pract. Experience 25(12), 1643–1655 (2013)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Snooze web site. http://snooze.inria.fr
  22. 22.
    Van, H.N., Tran, F., et al.: SLA-aware virtual resource management for cloud infrastructures. In: IEEE CIT 2009, October 2009Google Scholar
  23. 23.
    Wang, M., Meng, X., Zhang, L.: Consolidating virtual machines with dynamic bandwidth demand in data centers. In: IEEE INFOCOM 2011, April 2011Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ASCOLA Research Group (Mines Nantes, Inria, LINA)NantesFrance

Personalised recommendations