Modal Inclusion Logic: Being Lax is Simpler than Being Strict

  • Lauri Hella
  • Antti Kuusisto
  • Arne MeierEmail author
  • Heribert Vollmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9234)


We investigate the computational complexity of the satisfiability problem of modal inclusion logic. We distinguish two variants of the problem: one for strict and another one for lax semantics. The complexity of the lax version turns out to be complete for EXPTIME, whereas with strict semantics, the problem becomes \({\mathsf{{NEXPTIME}}}\)-complete.



The authors thank the anonymous referees for their comments. The third author is supported by DFG grant ME 4279/1-1. The second author acknowledges support from Jenny and Antti Wihuri Foundation.


  1. 1.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Galliani, P., Hannula, M., Kontinen, J.: Hierarchies in independence logic. In: Ronchi Della Rocca, S. (ed.) Proceedings of Computer Science Logic 2013. Leibniz International Proceedings in Informatics (LIPIcs), vol. 23, pp. 263–280 (2013)Google Scholar
  4. 4.
    Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  5. 5.
    Hella, L., Kuusisto, A., Meier, A., Vollmer, H.: Modal inclusion logic: Being lax is simpler than being strict. arXiv, 1504.06409 (2015)Google Scholar
  6. 6.
    Hemaspaandra, E.: The price of universality. Notre Dame J. Formal Logic 37(2), 174–203 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kontinen, J., Müller, J.-S., Schnoor, H., Vollmer, H.: Modal independence logic. In: Goré, R., Kooi, B.P., Kurucz, A. (eds.) Proceedings of Advances in Modal Logic, vol. 10, pp. 353–372. College Publications, London (2014)Google Scholar
  8. 8.
    Ladner, R.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  10. 10.
    Peterson, G., Azhar, S., Reif, J.H.: Lower bounds for multiplayer noncooperative games of incomplete information. Comput. Math. Appl. 41, 957–992 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. JoLLI 14(3), 369–395 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sevenster, M.: Model-theoretic and computational properties of modal dependence logic. J. Logic Comput. 19(6), 1157–1173 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Väänänen, J.: Modal dependence logic. In: Apt, K., van Rooij, R. (eds.) New Perspectives on Games and Interaction, pp. 237–254. Amsterdam University Press, Amsterdam (2008)Google Scholar
  15. 15.
    van Eijck, J.: Dynamic epistemic logics. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics, pp. 175–202. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lauri Hella
    • 1
  • Antti Kuusisto
    • 2
  • Arne Meier
    • 3
    Email author
  • Heribert Vollmer
    • 3
  1. 1.School of Information SciencesUniversity of TampereTampereFinland
  2. 2.Department of Philosophy, Stockholm University, SE-106 91 Stockholm, Sweden and DTU ComputeTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.Institut für Theoretische InformatikLeibniz Universität HannoverHannoverGermany

Personalised recommendations