Advertisement

Weighted Automata and Logics on Graphs

  • Manfred Droste
  • Stefan DückEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9234)

Abstract

Weighted automata model quantitative features of the behavior of systems and have been investigated for various structures like words, trees, traces, pictures, and nested words. In this paper, we introduce a general model of weighted automata acting on graphs, which form a quantitative version of Thomas’ unweighted model of graph acceptors. We derive a Nivat theorem for weighted graph automata which shows that their behaviors are precisely those obtainable from very particular weighted graph automata and unweighted graph acceptors with a few simple operations. We also show that a suitable weighted MSO logic is expressively equivalent to weighted graph automata. As a consequence, we obtain corresponding Büchi-type equivalence results known from the recent literature for weighted automata and weighted logics on words, trees, pictures, and nested words. Establishing such a general result has been an open problem for weighted logic for some time.

Keywords

Quantitative automata Graphs Quantitative logic Weighted automata Büchi Nivat 

References

  1. 1.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 16:1–16:43 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous recognizable two-dimensional languages. ITA 40(2), 277–293 (2006)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Monographs in Theoretical Computer Science, vol. 12. Springer, Heidelberg (1988)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  5. 5.
    Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble weighted automata and weighted logics. ACM Trans. Comput. Log. 15(2), 15 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik und Grundlagen Math. 6, 66–92 (1960)CrossRefzbMATHGoogle Scholar
  7. 7.
    Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4(5), 406–451 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Droste, M., Dück, S.: Weighted automata and logics for infinite nested words. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 323–334. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  9. 9.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1–2), 69–86 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Droste et al. [11], chapter 5, pp. 175–211Google Scholar
  11. 11.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Droste, M., Kuske, D.: Weighted automata. In: Pin, J.E. (ed.) Handbook: “Automata: from Mathematics to Applications". Europ. Mathematical Soc. (to appear)Google Scholar
  13. 13.
    Droste, M., Perevoshchikov, V.: A Nivat theorem for weighted timed automata and weighted relative distance logic. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 171–182. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theor. Comput. Sci. 366(3), 228–247 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Eilenberg, S.: Automata, Languages, and Machines, Pure and Applied Mathematics, vol. 59-A. Academic Press, New York (1974) Google Scholar
  16. 16.
    Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98(1), 21–52 (1961)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fichtner, I.: Weighted picture automata and weighted logics. Theory Comput. Syst. 48(1), 48–78 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Giammarresi, D., Restivo, A., Seibert, S., Thomas, W.: Monadic second-order logic over rectangular pictures and recognizability by tiling systems. Inf. Comput. 125(1), 32–45 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Golan, J.S.: Semirings and their Applications. Kluwer Academic Publishers, Dordrecht (1999) CrossRefzbMATHGoogle Scholar
  20. 20.
    Hanf, W.: Model-theoretic methods in the study of elementary logic. In: Addison, J., Henkin, L., Tarski, A. (eds.) The Theory of Models, pp. 132–145. Amsterdam, North-Holland (1965)Google Scholar
  21. 21.
    Hoogeboom, H.J., ten Pas, P.: Monadic second-order definable text languages. Theory Comput. Syst. 30(4), 335–354 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs in Theoretical Computer Science, vol. 6. Springer, Heidelberg (1986) Google Scholar
  23. 23.
    Mathissen, C.: Definable transductions and weighted logics for texts. Theor. Comput. Sci. 411(3), 631–659 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mathissen, C.: Weighted logics for nested words and algebraic formal power series. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 221–232. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  25. 25.
    Meinecke, I.: Weighted logics for traces. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 235–246. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  26. 26.
    Monmege, B.: Specification and Verification of Quantitative Properties: Expressions, Logics, and Automata. Thèse de doctorat, ENS Cachan, France (2013)Google Scholar
  27. 27.
    Nivat, M.: Transductions des langages de Chomsky. Ann. de l’Inst. Fourier 18, 339–455 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs in Computer Science. Springer, New York (1978) CrossRefGoogle Scholar
  30. 30.
    Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2–3), 245–270 (1961)CrossRefzbMATHGoogle Scholar
  31. 31.
    Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81 (1968)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Thomas, W.: On logical definability of trace languages. In: Diekert, V. (ed.) Proceedings of workshop ASMICS 1989, pp. 172–182. Technical University of Munich (1990)Google Scholar
  33. 33.
    Thomas, W.: On logics, tilings, and automata. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 441–454. Springer, Heidelberg (1991) CrossRefGoogle Scholar
  34. 34.
    Thomas, W.: Elements of an automata theory over partial orders. In: Proceedings of DIMACS Workshop POMIV 1996, pp. 25–40. AMS Press Inc, New York, USA (1996)Google Scholar
  35. 35.
    Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates (in Russian). Doklady Akademii Nauk SSR 140, 326–329 (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Computer ScienceLeipzig UniversityLeipzigGermany

Personalised recommendations