Locally Chain-Parsable Languages

  • Stefano Crespi Reghizzi
  • Violetta Lonati
  • Dino Mandrioli
  • Matteo Pradella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9234)

Abstract

If a context-free language enjoys the local parsability property then, no matter how the source string is segmented, each segment can be parsed independently, and an efficient parallel parsing algorithm becomes possible. The new class of locally chain-parsable languages (LCPL), included in deterministic context-free languages, is here defined by means of the chain-driven automaton and characterized by decidable properties of grammar derivations. Such automaton decides to reduce or not a factor in a way purely driven by the terminal characters, thus extending the well-known concept of Input-Driven (ID) (visibly) pushdown machines. LCPL extend and improve the practically relevant operator-precedence languages (Floyd), which are known to strictly include the ID languages, and for which a parallel-parser generator exists. Consistently with the classical results for ID, chain-compatible LCPL are closed under reversal and Boolean operations, and language inclusion is decidable.

References

  1. 1.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: Parallel parsing of operator precedence grammars. IPL 113, 245–249 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: Parallel parsing made practical. SCP (2015). under revisionGoogle Scholar
  4. 4.
    Beaudry, M., Holzer, M., Niemann, G., Otto, F.: McNaughton families of languages. TCS 290(3), 1581–1628 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Boasson, L., Sénizergues, G.: NTS languages are deterministic and congruential. J. CSS 31(3), 332–342 (1985)MATHGoogle Scholar
  6. 6.
    Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown property. J. CSS 78(6), 1837–1867 (2012)MathSciNetMATHGoogle Scholar
  7. 7.
    Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333 (1963)CrossRefMATHGoogle Scholar
  8. 8.
    Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley, New York (1978)MATHGoogle Scholar
  9. 9.
    Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence languages: Their automata-theoretic and logic characterization. SICOMP (2015). to appearGoogle Scholar
  10. 10.
    McNaughton, R., Narendran, P., Otto, F.: Church-rosser thue systems and formal languages. J. ACM 35(2), 324–344 (1988)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mehlhorn, K.: Pebbling mountain ranges and its application of DCFL-recognition. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85. Springer, Heidelberg (1980) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Stefano Crespi Reghizzi
    • 1
  • Violetta Lonati
    • 2
  • Dino Mandrioli
    • 1
  • Matteo Pradella
    • 1
  1. 1.DEIB - Politecnico di MilanoMilan Italy
  2. 2.DI - Università degli Studi di MilanoMilanItaly

Personalised recommendations