Densest Subgraph in Dynamic Graph Streams

  • Andrew McGregorEmail author
  • David Tench
  • Sofya Vorotnikova
  • Hoa T. Vu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)


In this paper, we consider the problem of approximating the densest subgraph in the dynamic graph stream model. In this model of computation, the input graph is defined by an arbitrary sequence of edge insertions and deletions and the goal is to analyze properties of the resulting graph given memory that is sub-linear in the size of the stream. We present a single-pass algorithm that returns a \((1+\epsilon )\) approximation of the maximum density with high probability; the algorithm uses \(O(\epsilon ^{-2} n {{\mathrm{polylog}}}~n)\) space, processes each stream update in \({{\mathrm{polylog}}}(n)\) time, and uses \({{\mathrm{poly}}}(n)\) post-processing time where n is the number of nodes. The space used by our algorithm matches the lower bound of Bahmani et al. (PVLDB 2012) up to a poly-logarithmic factor for constant \(\epsilon \). The best existing results for this problem were established recently by Bhattacharya et al. (STOC 2015). They presented a \((2+\epsilon )\) approximation algorithm using similar space and another algorithm that both processed each update and maintained a \((4+\epsilon )\) approximation of the current maximum density in \({{\mathrm{polylog}}}(n)\) time per-update.


  1. 1.
    Ahn, K.J., Cormode, G., Guha, S., McGregor, A., Wirth, A.: Correlation clustering in data streams. In: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, July 6–11, 2015 (2015)Google Scholar
  2. 2.
    Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measurements. In: Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 459–467 (2012)Google Scholar
  3. 3.
    Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In: 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 5–14 (2012)Google Scholar
  4. 4.
    Ahn, K.J., Guha, S., McGregor, A.: Spectral sparsification in dynamic graph streams. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 1–10. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Tight bounds for linear sketches of approximate matchings. CoRR, abs/1505.01467 (2015)Google Scholar
  6. 6.
    Bahmani, B., Goel, A., Munagala, K.: Efficient primal-dual graph algorithms for mapreduce. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2014. LNCS, vol. 8882, pp. 59–78. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and mapreduce. PVLDB 5(5), 454–465 (2012)Google Scholar
  8. 8.
    Bhattacharya, S., Henzinger, M., Nanongkai, D., Tsourakakis, C.E.: Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In: STOC (2015)Google Scholar
  9. 9.
    Bury, M., Schwiegelshohn, C.: Sublinear estimation of weighted matchings in dynamic data streams. CoRR, abs/1505.02019 (2015)Google Scholar
  10. 10.
    Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  11. 11.
    Chitnis, R.H., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A., Monemizadeh, M., Vorotnikova, S.: Kernelization via sampling with applications to dynamic graph streams. CoRR, abs/1505.01731 (2015)Google Scholar
  12. 12.
    Cormode, G., Firmani, D.: A unifying framework for \(\ell _0\)-sampling algorithms. Distrib. Parallel Databases 32(3), 315–335 (2014)CrossRefGoogle Scholar
  13. 13.
    Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Epasto, A., Lattanzi, S., Sozio, M.: Efficient densest subgraph computation in evolving graphs. In: WWW (2015)Google Scholar
  15. 15.
    Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gilbert, A.C., Indyk, P.: Sparse recovery using sparse matrices. Proc. IEEE 98(6), 937–947 (2010)CrossRefGoogle Scholar
  17. 17.
    Goel, A., Kapralov, M., Post, I.: Single pass sparsification in the streaming model with edge deletions. CoRR, abs/1203.4900 (2012)Google Scholar
  18. 18.
    Goldberg, A.V.: Finding a maximum density subgraph. Technical report, Berkeley, CA, USA (1984)Google Scholar
  19. 19.
    Guha, S., McGregor, A., Tench, D.: Vertex and hypergraph connectivity in dynamic graph streams. In: PODS (2015)Google Scholar
  20. 20.
    Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for lp samplers, finding duplicates in streams, and related problems. In: PODS, pp. 49–58 (2011)Google Scholar
  21. 21.
    Kapralov, M., Lee, Y.T., Musco, C., Musco, C., Sidford, A.: Single pass spectral sparsification in dynamic streams. In: FOCS (2014)Google Scholar
  22. 22.
    Kapralov, M., Woodruff, D.P.: Spanners and sparsifiers in dynamic streams. In: ACM Symposium on Principles of Distributed Computing, PODC 2014, Paris, France, July 15–18, 2014, pp. 272–281 (2014)Google Scholar
  23. 23.
    Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  24. 24.
    Konrad, C.: Maximum matching in turnstile streams. CoRR, abs/1505.01460 (2015)Google Scholar
  25. 25.
    Kutzkov, K., Pagh, R.: Triangle counting in dynamic graph streams. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 306–318. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  26. 26.
    Lee, V., Ruan, N., Jin, R., Aggarwal, C.: A survey of algorithms for dense subgraph discovery. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. Advances in Database Systems, vol. 40, pp. 303–336. Springer, US (2010)CrossRefGoogle Scholar
  27. 27.
    McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20 (2014)CrossRefGoogle Scholar
  28. 28.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrew McGregor
    • 1
    Email author
  • David Tench
    • 1
  • Sofya Vorotnikova
    • 1
  • Hoa T. Vu
    • 1
  1. 1.University of MassachusettsAmherstUSA

Personalised recommendations