Advertisement

Faster Lightweight Lempel-Ziv Parsing

  • Dmitry Kosolobov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)

Abstract

We present an algorithm that computes the Lempel-Ziv decomposition in \(O(n(\log \sigma + \log \log n))\) time and \(n\log \sigma + \epsilon n\) bits of space, where \(\epsilon \) is a constant rational parameter, n is the length of the input string, and \(\sigma \) is the alphabet size. The \(n\log \sigma \) bits in the space bound are for the input string itself which is treated as read-only.

Keywords

Lexicographical Order Input String Early Occurrence Alphabet Size Suffix Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Belazzougui, D.: Succinct dictionary matching with no slowdown. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 88–100. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  2. 2.
    Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest common prefix array based on the Burrows-Wheeler transform. J. Discrete Algorithms 18, 22–31 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algorithms for maintaining order in a list. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  4. 4.
    Blelloch, G.E.: Space-efficient dynamic orthogonal point location, segment intersection, and range reporting. In: SODA 2008. pp. 894–903. SIAM (2008)Google Scholar
  5. 5.
    Burkhardt, S., Kärkkäinen, J.: Fast lightweight suffix array construction and checking. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 55–69. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  6. 6.
    Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical report 124 (1994)Google Scholar
  7. 7.
    Fischer, J., I, T., Köppl, D.: Lempel Ziv Computation In Small Space (LZ-CISS). In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) CPM 2015. LNCS, vol. 9133, pp. 172–184. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  8. 8.
    Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic dictionaries. J. Algorithms 41(1), 69–85 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hon, W.K., Sadakane, K., Sung, W.K.: Breaking a time-and-space barrier in constructing full-text indices. In: FOCS 2003. pp. 251–260. IEEE (2003)Google Scholar
  10. 10.
    Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight lempel-ziv parsing. In: Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 139–150. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: SODA 2007. pp. 565–574. SIAM (2007)Google Scholar
  12. 12.
    Kosolobov, D.: Lempel-Ziv factorization may be harder than computing all runs. In: STACS 2015. LIPICS, vol. 30, pp. 582–593 (2015)Google Scholar
  13. 13.
    Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theor. 22(1), 75–81 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees. ACM Trans. Algorithms (TALG) 10(3), 16 (2014)MathSciNetGoogle Scholar
  15. 15.
    Ohlebusch, E., Gog, S.: Lempel-ziv factorization revisited. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 15–26. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Okanohara, D., Sadakane, K.: An online algorithm for finding the longest previous factors. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 696–707. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: SODA 2002. pp. 233–242. SIAM (2002)Google Scholar
  18. 18.
    Starikovskaya, T.: Computing lempel-ziv factorization online. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 789–799. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Yamamoto, J., I, T., Bannai, H., Inenaga, S., Takeda, M.: Faster compact on-line Lempel-Ziv factorization. In: STACS 2014. LIPICS, vol. 25, pp. 675–686 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations