The Price of Connectivity for Cycle Transversals

  • Tatiana R. Hartinger
  • Matthew JohnsonEmail author
  • Martin Milanič
  • Daniël Paulusma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9235)


For a family of graphs \({\mathcal F}\), an \(\mathcal {F}\)-transversal of a graph G is a subset \(S \subseteq V(G)\) that intersects every subset of V(G) that induces a subgraph isomorphic to a graph in \(\mathcal {F}\). Let \(t_\mathcal {F}(G)\) be the minimum size of an \(\mathcal {F}\)-transversal of G, and \( ct _\mathcal {F}(G)\) be the minimum size of an \(\mathcal {F}\)-transversal of G that induces a connected graph. For a class of connected graphs \(\mathcal{G}\), the price of connectivity for \(\mathcal {F}\)-transversals is the supremum of the ratios \( ct _\mathcal {F}(G)/t_\mathcal {F}(G)\) over all \(G\in \mathcal{G}\). We perform an in-depth study into the price of connectivity for various well-known graph families \(\mathcal{F}\) that contain an infinite number of cycles and that, in addition, may contain one or more anticycles or short paths. For each of these families we study the price of connectivity for classes of graphs characterized by one forbidden induced subgraph H. We determine exactly those classes of H-free graphs for which this graph parameter is bounded by a multiplicative constant, bounded by an additive constant, or equal to 1. In particular, our tetrachotomies extend known results of Belmonte et al. (EuroComb 2012, MFCS 2013) for the case when \(\mathcal{F}\) is the family of all cycles.


  1. 1.
    Belmonte, R., van ’t Hof, P., Kamiński, M., Paulusma, D.: The price of connectivity for feedback vertex set. In: Proceedings of the EuroComb 2013 CRMS 16, pp. 123–128 (2013)Google Scholar
  2. 2.
    Belmonte, R., van ’t Hof, P., Kamiński, M., Paulusma, D.: Forbidden induced subgraphs and the price of connectivity for feedback vertex set. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 57–68. Springer, Heidelberg (2014) Google Scholar
  3. 3.
    Camby, E., Cardinal, J., Fiorini, S., Schaudt, O.: The Price of Connectivity for Vertex Cover. Discrete Math. Theor. Comput. Sci. 16, 207–224 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Camby, E., Schaudt, O.: The price of connectivity for dominating set: Upper bounds and complexity. Discrete Appl. Math. 17, 53–59 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cardinal, J., Levy, E.: Connected vertex covers in dense graphs. Theoret. Comput. Sci. 411, 2581–2590 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Duchet, P., Meyniel, H.: On Hadwiger’s number and the stability number. Ann. Discret. Math. 13, 71–74 (1982)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Grigoriev, A., Sitters, R.: Connected Feedback Vertex Set in Planar Graphs. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 143–153. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Schweitzer, P., Schweitzer, P.: Connecting face hitting sets in planar graphs. Inf. Process. Lett. 111, 11–15 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zverovich, I.E.: Perfect connected-dominant graphs. Discussiones Math. Graph Theor. 23, 159–162 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tatiana R. Hartinger
    • 1
  • Matthew Johnson
    • 2
    Email author
  • Martin Milanič
    • 1
  • Daniël Paulusma
    • 2
  1. 1.UP IAM and UP FAMNITUniversity of PrimorskaKoperSlovenia
  2. 2.School of Engineering and Computing SciencesDurham UniversityDurhamUK

Personalised recommendations